
For any number of underlying assets or names in a 
portfolio, adjoint algorithmic differentiation allows 
the calculation of the full first order risk at a com-

putational cost which is at most four times the cost of 
calculating the profit and loss statement of the portfolio 
itself. This opens the way to real time risk management 
for the most challenging applications such as the hedg-
ing of counterparty credit risk.

Managing counterparty credit risk
Setting up a theoretically sound framework for manag-
ing counterparty credit risk is challenging because it 
requires the evaluation of all the trades facing a given 
counterparty within a consistent pricing methodology. 
For multi-asset portfolios this typically comes with 
extraordinary computational challenges, and a high 
infrastructure cost.

For a given portfolio of trades facing the same inves-
tor or institution, the credit valuation adjustment (CVA) 
aims to capture the expected loss associated with the 
counterparty defaulting in a situation in which the posi-
tion, netted for any collateral agreement, has a positive 
mark-to-market for the dealer. This can be evaluated at 
time  as 

where  is the default time of the counterparty, 
is the net present value of the portfolio at time  from 
the dealer’s point of view,  is the collateral 
outstanding, typically dependent on the rating  of the 
counterparty,  is the loss given default,  is 
the discount factor for the interval , and  
is the indicator that the counterparty’s default happens 
before the longest deal maturity in the portfolio, . 

Here for simplicity of notation we consider the 
unilateral CVA; the generalisation to bilateral CVA is 
straightforward. In general, the quantity above depends 
on several correlated random market factors, includ-
ing interest rate, counterparty’s default time and rating, 
recovery amount, and all the market factors that the net 
present value of the portfolio depends on. As such, its 
calculation requires a Monte Carlo simulation. 

Standard approaches for the calculation of risk require 

repeating the calculation of the profit and loss state-
ment (P&L) of the portfolio under hundreds of market 
scenarios. As a result, in many cases these calculations 
cannot be completed in a practical amount of time, even 
employing a vast amount of computer power. Since 
the total cost of the through-the-life risk management 
can determine whether it is profitable to execute a new 
trade, solving this technology problem is critical to 
allow a securities firm to remain competitive. 

Speeding up the risk calculation
Algorithmic differentiation (AD) is a set of program-
ming techniques for the efficient calculation of the deriv-
atives of functions implemented as computer programs. 
The main idea underlying AD is that any such function 
– no matter how complicated – can be interpreted as a 
composition of basic arithmetic and intrinsic operations 
that are easy to differentiate. 

What makes AD particularly attractive, when com-
pared to standard (finite-difference) methods for the 
calculation of derivatives, is its computational efficiency. 
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Speed-up in the calculation of risk for the CVA of a portfolio of five commod-
ity swaps over a five-year horizon, as a function of the number of risks com-
puted (empty dots). The full dots are the ratio of the computer time required 
for the calculation of the CVA, and its sensitivities, and the computer time 
spent for the computation of the CVA alone. Lines are guides for the eye.
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In fact, AD exploits the information on the structure of 
the computer code in order to optimise the calculation. 
In particular, when one requires the derivatives of a 
small number of outputs with respect to a large number 
of inputs, the calculation can be highly optimised by 
applying the chain rule through the instructions of the 
program in opposite order with respect to their original 
evaluation. This gives rise to the adjoint (mode of) algo-
rithmic differentiation (AAD). 

The main ideas underlying AAD can be illustrated by 
considering a function 

mapping a real vector  to a real scalar  through a 
sequence of steps 

Here, each step can be a distinct high-level function or 
even an individual instruction.

The adjoint mode of AD results from propagating 
the derivatives of the final result with respect to all the 
intermediate variables – the so called adjoints – until the 
derivatives with respect to the independent variables are 
formed. Using the standard AD notation, the adjoint of 
any intermediate variable  is defined as

where  is a constant (that we can think for instance 
equal to 1). Starting from the adjoint of the outputs,   , 
by applying the chain rule we can calculate the adjoint 
of the intermediate variables working from right to left

 
until we obtain , i.e., 

the gradient of the function  multiplied by   . 
One particularly important theoretical result is that 

the execution time of such adjoint recursion is bounded 
by approximately four times the cost of execution of the 
original one, irrespective of the number of inputs. Thus, 
one can obtain the sensitivity of a single output to an 
unlimited number of inputs for a little more work than 
the original calculation. 

In the context of a Monte Carlo simulation, these 

ideas can be used for a highly efficient implementation 
of the so-called path-wise derivative method.

Testing the adjoint algorithmic differentiation calculation
As a numerical test we present here results for the cal-
culation of risk on the CVA of a portfolio of swaps on 
commodity futures. In this case, the remarkable compu-
tational efficiency of the AAD implementation is clearly 
illustrated in the chart, left. Here we plot the speedup 
produced by AAD with respect to the standard finite-
differences method. On a fairly typical trade horizon 
of five years, for a portfolio of five swaps referencing 
distinct commodities futures with monthly expiries, the 
CVA bears nontrivial risk to over 600 parameters: 300 
futures prices, and at-the-money volatilities, (say) 10 
points on the zero rate curve, and 10 points on the CDS 
curve of the counterparty used to calibrate the transition 
probabilities of the rating transition model. 

As illustrated in the chart, the computer time required 
for the calculation of the CVA, and its sensitivities, is 
less than four times the time spent for the computation 
of the CVA alone, as predicted by the general result 
quoted above. As a result, even for this very simple 
application, AAD produces risk over 150 times faster 
than finite differences; that is, for a CVA evaluation tak-
ing 10 seconds, AAD produces the full set of sensitivities 
in less than 40 seconds, while finite differences require 
approximately 1 hour and 40 minutes.

Moreover, as a result of the analytic integration of the 
singularities introduced by the rating process, the risk 
produced by AAD is typically substantially less noisy 
than the one produced by finite differences, so that a 
dramatically reduced number of iterations is required to 
achieve a satisfactory Monte Carlo confidence interval, 
thus resulting in an additional remarkable speedup. 

In conclusion, adjoint algorithmic differentiation 
allows an extremely efficient calculation of counter-
party credit risk valuations in Monte Carlo. The scope 
of this technique is clearly not limited to this important 
application but extends to virtually any valuation per-
formed either with stochastic or deterministic numerical 
methods. 
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authors, and do not necessarily represent those of Credit Suisse Group.
References and notes for this piece may be found online.

Luca Capriotti is a director, 
Jacky Lee is a managing 
director and Matthew 
Peacock is a vice-president 
in quantitative strategies, 
at Credit Suisse. All three 

work in New York in the 
global credit product quant 
strats team, of which Lee 
is global head and Capriotti 
is US regional head. The 
authors hold PhDs in 

theoretical physics (from 
the International School 
of Advanced Studies), 
operations research 
(Stanford) and engineering 
(Sydney), respectively. 

Luca Capriotti Jacky Lee Matthew 
Peacock

10 years of Creditflux September 2011 25


