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Least-squares Importance Sampling for Monte
Carlo security pricing
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We describe a simple Importance Sampling strategy for Monte Carlo simulations based on a
least-squares optimization procedure. With several numerical examples, we show that such
Least-squares Importance Sampling (LSIS) provides efficiency gains comparable to the state-
of-the-art techniques, for problems that can be formulated in terms of the determination of the
optimal mean of a multivariate Gaussian distribution. In addition, LSIS can be naturally
applied to more general Importance Sampling densities and is particularly effective when the
ability to adjust higher moments of the sampling distribution, or to deal with non-Gaussian or
multi-modal densities, is critical to achieve variance reductions.
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1. Introduction

The impressive development of the securities markets has
generated in the last few years a steady demand for more
and more structured financial products. At the same time,
the level of sophistication and complexity of the pricing
models employed by investment firms has dramatically
increased, in a continuous search for a possible edge
against competitors. As a result, an increasing fraction of
the models employed in practice is too complex to be
treated by analytic or deterministic numerical methods
(trees or partial differential equations), and Monte Carlo
simulation becomes more often than ever the only
computationally feasible means of pricing and hedging.

Although generally easy to implement, Monte Carlo
simulations are infamous for being slow. In fact, being
stochastic in nature, their outcome is always affected by a
statistical error, that can generally be reduced to the
desired level of accuracy by iterating the calculation for a
long enough time. This comes with a high computational
cost since such statistical uncertainties, all things being
equal, are inversely proportional to the square root of the
number of statistically independent samples. Hence,

in order to reduce the error by a factor of 10 one has
to spend 100 times as much computer time. For
this reason, to be used on a trading floor, Monte Carlo
simulations often require to be run on large parallel
computers with a high financial cost in terms of hardware,
infrastructure, and software development.

Motivated by this very practical necessity, several
approaches to speed up Monte Carlo calculations, such
as antithetic variables, control variates, and Importance
Sampling, have been proposed over the years
(Glasserman 2004). These techniques aim to reduce the
variance per Monte Carlo observation so that a given
level of accuracy can be obtained with a smaller number
of iterations. In general, this can be done by exploiting
some information known a priori on the structure of the
problem at hand, like a symmetry property of the
Brownian paths (antithetic variables), the value of a
closely related security (control variates), or the form of
the statistical distribution of the random samples
(Importance Sampling). Antithetic variables and control
variates are the most commonly used variance reduction
techniques, mainly because of the simplicity of their
implementation, and the fact that they can be
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accommodated in an existing Monte Carlo calculator
with a small effort. However, their effectiveness varies
largely across applications, and is sometimes rather
limited (Glasserman 2004).

On the other hand, Importance Sampling techniques,
although potentially more powerful, have not been
employed much in professional contexts until recently.
This is mainly because such techniques generally involve a
bigger implementation effort, and they are also less
straightforward to include in a general Monte Carlo
framework. Moreover, when used improperly,
Importance Sampling can increase the variance of the
Monte Carlo estimators, thus making its integration in an
automated environment more problematic. Nonetheless,
the potential efficiency gains at stake are so large that the
interest in finding efficient Importance Sampling schemes
is still very high.

The idea behind Importance Sampling is to reduce the
statistical uncertainty of a Monte Carlo calculation by
focusing on the most important sectors of the space from
which the random samples are drawn. Such regions
critically depend on both the random process simulated,
and the structure of the security priced. For instance, for a
deep out-of-the money call option (Hull 2002), the payoff
sampled is zero for most of the iterations of a Monte
Carlo simulation. Hence, simulating more samples with
positive payoff reduces the variance. This can be done by
changing the probability distribution from which the
samples are drawn, and reweighing the payout function
by the appropriate likelihood ratio (Radon-Nikodyn
derivative) in order to produce an unbiased result of the
original problem (Glasserman 2004).

Most of the work in Importance Sampling methods for
security pricing has been done in a Gaussian setting
(Reider 1993, Boyle et al. 1997, Vazquez-Abad and
Dufresne 1998, Glasserman et al. 1999a, b, Su and Fu
2000, 2002, Arouna 2003, 2004) such as that arising from
the simulation of a diffusion process. In this framework,
Importance Sampling is achieved by modifying the drift
term of the simulated process in order to drive the
Brownian paths towards the regions that are the most
important for the evaluation of the security. For instance,
for the call option above, this can be obtained by
increasing the drift term up to a certain optimal level
(Reider 1993, Boyle et al. 1997). The different approaches
proposed in the literature essentially differ in the way in
which such a change of drift is found, and can be roughly
divided into two families depending on the strategy
adopted. The first strategy, common to the so-called
adaptive Monte Carlo methods (Vazquez-Abad and
Dufresne 1998, Su and Fu 2000, 2002, Arouna 2003),
aims to determine the optimal drift through stochastic
optimization techniques that typically involve an iterative
algorithm. On the other hand, the second strategy,
proposed in a remarkable paper by Glasserman,

Heidelberger, and Shahabuddin (GHS)(Glasserman
et al. 1999a), relies on a deterministic optimization
procedure that can be applied for a specific class of
payouts. This approach, although approximate, turns out
to be very effective for several pricing problems, including
the simulation of a single factor Heath-Jarrow-Morton
model (Glasserman et al. 1999b and portfolio credit
scenarios (Glasserman and Li 2005).

In this paper, we propose the Least-squares Importance
Sampling (LSIS) as an effective and flexible variance
reduction method for Monte Carlo security pricing. This
approach, originally proposed in physics for the optimiza-
tion of quantum mechanical wave functions of correlated
electrons (Umrigar et al. 1998), is applied here in a
financial setting. In LSIS the determination of the optimal
drift—or, more generally, of the most important regions of
the sample space—is formulated in terms of a least-
squares minimization. This technique can be easily
implemented and included in an existing Monte Carlo
code, and simply relies on a standard least-square
algorithm for which several optimized libraries are
available. We will show that LSIS provides efficiency
gains analogous to those of previously proposed methods
for problems that can be formulated in terms of the
determination of the optimal mean vector of a multi-
variate Gaussian density. In addition, LSIS can be
naturally applied to more general Importance Sampling
densities such as non-Gaussian or multi-modal
distributions.

In the following section, we begin by reviewing the
main ideas behind Importance Sampling in a generic
Monte Carlo framework. Then in section 3 we specialize
the discussion to the Gaussian setting, and we briefly
review the recent adaptive strategies, and the GHS
approach of Glasserman et al. 1999a. The rationale of
LSIS is introduced in section 4 together with the essential
implementation details, and in section 5 we present the
results of our numerical experiments. Here we perform a
systematic study of the variance reductions obtained by
means of LSIS for a variety of test cases, including a
comparison with recent Importance Sampling techniques.
Finally, we draw our conclusions in section 6.

2. Importance sampling

Let us consider the general problem of estimating the
expectation value of a scalar function, G(Z ), depending
on a d-dimensional real random vector Z¼ (Z1, . . . ,Zd)
with joint probability density P(Z ),

V ¼ EP½GðZÞ% ¼
Z

D
dZGðZÞPðZÞ, ð1Þ

where D is the domain of possible values of the state
variables Z.y In a financial derivatives context, G(Z )

yIn the present discussion we will treat the Zi’s as continuous variables, however all the results also apply if some or all of them can
assume only a discrete set of values. For any such variable, the symbol

R
dZi is to be interpreted as a sum over the possible outcomes.

Here and in the following, with a slight abuse of notation, we indicate by Z both the random variables and the dummy variables of
integration.
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would typically represent the discounted payout of a
certain security, and P(Z ) would be the risk-neutral
probability density of an arbitrage free market (Harrison
and Kreps 1979, Baxter and Rennie 1996, Musiela and
Rutkowski 2002). For instance, for the familiar call
option in the Black-Scholes framework (Hull 2002) one
has d¼ 1, P(Z )¼ (2!)&1/2 exp(&Z2/2) and

GðZÞ ¼ e&rT X0 exp r& "2

2

! "
Tþ "Z

# $
& K

! "þ

, ð2Þ

where r is the risk-free interest rate, " is the volatility, X0

and K are, respectively, the spot and strike price, and T
the maturity of the option.

Whenever the dimension d of the state variable Z is
large (say d* 4) standard numerical quadrature
approaches become highly inefficient, and Monte Carlo
methods are the only feasible route for estimating
expectation values of the form (1). To do so, one
interprets Equation (1) as a weighted average of the
payout function G(Z ) over the possible configurations Z
with weights given by the probability density P(Z ). This
immediately leads to the simplest (and crudest) Monte
Carlo estimator which is obtained by averaging the
payout function over a sample of Np independent values
of the random variable Z generated according to the
probability density P(Z ),

V ’ !V ¼ 1

Np

XNp

i¼1

GðZiÞ, Zi ( PðZÞ: ð3Þ

In particular, the central limit theorem (Kallenberg 1997)
ensures that, for big enough samples, the values of the
estimator !V are normally distributed around the true
value, and converge for Np!1 towards V, namely

V ’ 1

Np

XNp

i¼1

GðZiÞ )
"
ffiffiffiffiffiffi
Np

p , ð4Þ

where "2¼EP[G(x)
2]&EP[G(x)]

2 is the variance of the
estimator and can be similarly approximated by

"2 ’ 1

Np

XNp

i¼1

ðGðZiÞ & !VÞ2: ð5Þ

Although equation (4) ensures the convergence of the
Monte Carlo estimator to the expectation value (1), its
practical utility depends on the magnitude of the
variance, "2. Indeed, the square root convergence in
(4) implies that the number of replications Np that are
(asymptotically) necessary to achieve a given level of
accuracy is proportional to the variance of the
estimator.y Roughly speaking, such a quantity is
relatively small whenever the function G(Z ) is approxi-
mately constant over the region of values of Z that is

represented the most among the random samples, i.e.
the region that contains most of the probability mass
of P(Z ). This is generally not the case for most of the
pricing problems encountered in practice, and the
calculation of accurate estimates of the expectation
value (1) may require large sample sizes Np, thus
becoming computationally demanding.

However, the choice of extracting the random variable
Z according to the probability density P(Z ), although
natural, is by no means the only possible one. Indeed, the
Monte Carlo integration can be performed by sampling
an arbitrary probability density ~PðZÞ provided that the
integral is suitably reweighed. In fact, using the identity

Z

D
dZGðZÞPðZÞ ¼

Z

D
dZ

GðZÞPðZÞ
~PðZÞ

~PðZÞ, ð6Þ

an alternative estimator of the expectation value (1) is
readily found as

V ’ ~V ¼ 1

Np

XNp

i¼1

WðZiÞ GðZiÞ Zi ( ~PðZÞ, ð7Þ

with the weight function given by WðZÞ ¼ PðZÞ= ~PðZÞ.
The variance of the new Monte Carlo estimator reads

~"2 ¼
Z

D
dZ ðWðZÞGðZÞ & VÞ2 ~PðZÞ, ð8Þ

and critically depends on the choice of the sampling
probability density ~PðZÞ. For non-negative functions
G(Z ), the optimal choice of ~PðZÞ is the one for which ~"
vanishes, namely:

PoptðZÞ ¼
1

V
GðZÞPðZÞ: ð9Þ

In fact, the Monte Carlo estimator corresponding to such
an optimal sampling density reads

~V ’ 1

Np

XNp

i¼1

WðZiÞGðZiÞ ¼
1

Np

XNp

i¼1

V, ð10Þ

leading to a constant value V on each Monte Carlo
replication, and resulting therefore in zero variance.z
Unfortunately, such a choice is not really viable as the
normalization constant, V, is the expectation value (1) we
want to calculate in the first place.

3. Gaussian framework

The Importance Sampling approaches proposed in the
literature usually apply or are generally formulated within
a Gaussian setting, i.e. in a context where the density
P(Z ) defining the expectation value (1) is a d-dimensional
standard normal distribution. For example, this is the

yIn particular, the Monte Carlo integration becomes unfeasible if the variance of the estimator diverges, giving rise to the so-called
sign-problem instability. Although this problem is the crux of Monte Carlo simulations in several branches of the physical sciences
[see, e.g., Sorella, S. and Capriotti, L., Phys. Rev. B, 2000, 61, 2599], this issue does not usually affect financial contexts.
zIt is possible to show (Press et al. 2002) that, when G(Z ) does not have a definite sign, the optimal sampling density has the similar
form Popt¼ jG(Z )jP(Z )/V, although in this case the optimal variance is not zero.
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case for a Monte Carlo simulation of a vector diffusive
process of the form (Glasserman 2004)

dXðtÞ ¼ #ðXðtÞ, tÞdtþ "ðXðtÞ, tÞ dWt, ð11Þ

e.g. for the calculation of the price of an option depending
on the path followed by X(t) within a certain time interval
[0,T ]. Here the process X(t) and the drift #(X, t) are both
L-dimensional real vectors, Wt is an N-dimensional
standard Brownian motion, and the volatility, "(X, t), is
an L*N real matrix.

Continuous-time processes of the form (11) are
typically simulated by sampling X(t) on a discrete grid
of points, 0¼ t05t15+ + +5tM¼T, by means, for instance,
of a Euler schemey

Xiþ1 ¼ Xi þ #ðXi, tÞ#ti þ "ðXi, tÞ
ffiffiffiffiffiffiffi
#ti

p
Ziþ1, ð12Þ

where Xi¼X(ti), #ti¼ tiþ1& ti, and Ziþ1 is an
N-dimensional vector of independent standard normal
variates. In this representation, each discretized path for
the vector process X(t) can be put into a one-to-one
correspondence with a set of d¼N*M independent
standard normal variables Z. Hence, the original problem
of evaluating the expectation value of a functional of the
realized path of the process X(t) can be formulated as in
(1). More precisely, G(Z ) is given by the discretized
payout functional, and the probability density is given by
a d-dimensional standard normal distribution

PðZÞ ¼ ð2!Þ&d=2e&Z2=2, ð13Þ

where Z2¼Z +Z.
As a prototypical example of an exotic option pricing

problem, treated as a test case for the most recently
proposed Importance Sampling strategies (Glasserman
et al. 1999a, Su and Fu 2000, 2002, Arouna 2003), in the
following we will consider different arithmetic Asian-style
options under a Black-Scholes log-normal model (Baxter
and Rennie 1996). In this case, the underlying asset can be
simulated on the time grid relevant for the payout
function by means of the exact recursion

Xiþ1 ¼ Xi exp ðr& "2=2Þ#ti þ "
ffiffiffiffiffiffiffi
#ti

p
Ziþ1

h i
, ð14Þ

where r is the risk-free interest rate, " is the constant
N*L real volatility matrix, and "2 is an L-dimensional
vector of components "2

k ¼
PN

j¼1 "kj. For an arithmetic
Asian-style claim, the discounted payout function is of the
form

GðZÞ ¼ e&rT$ð !XÞ, ð15Þ

where !X ¼ ð1=MÞ
PM

i¼1 Xi, and $ð !XÞ is some function of L
variables. Clearly, European-style options are recovered
in the special case M¼ 1.

3.1. Gaussian trial distributions

The simplest possible strategy for Importance Sampling in
a Gaussian framework is to try to guide the sampled

paths towards the most important regions of the
configuration space (i.e. where the contribution of the
integrand is the largest) by means of a change of the drift
terms of the process (11) or (12). The corresponding trial
probability density reads

~P ~#ðZÞ ¼ ð2!Þ&d=2e&ðZ& ~#Þ2=2, ð16Þ

where ~# is a d-dimensional vector, and the weight
function, as also expected from the Girsanov theorem
(Musiela and Rutkowski 2002), is

W ~#ðZÞ ¼ exp½& ~# + Zþ ~#2=2%: ð17Þ

A variety of approaches for the determination of the
drift vector ~# minimizing the variance of the estimator (8)
has recently been proposed in the literature (Vazquez-
Abad and Dufresne 1998, Glasserman et al. 1999a, b, Su
and Fu 2000, 2002, Arouna 2003). These can be roughly
classified into two families depending on the strategy
adopted. The first strategy, common to the so-called
adaptive Monte Carlo methods, aims to determine the
optimal drift vector though a stochastic minimization of
the variance. Such minimization differs in detail in the
various methods but always involves an iterative proce-
dure, to be performed in a preliminary Monte Carlo
simulation.

In particular, Su and Fu (2000, 2002), building upon
previous work of Vazquez-Abad and Dufresne (1998),
used a gradient-based stochastic approximation, dubbed
infinitesimal perturbation analysis, in order to estimate
the optimal uniform shift of the drift for the diffusion (12),
minimizing the variance of the estimator (8). In the
notation of this section, this translates into working with
a trial density of the form (16) where the drift vector ~# has
components all equal to a single optimization parameter.
The improvement of this method with respect to that of
Vazquez-Abad and Dufresne (1998) is that the minimiza-
tion is carried out under the original probability measure
(as we also do for LSIS), while in the latter the
minimization was formulated under the trial probability
measure. As a result, the stochastic minimization applies
also for non-differentiable payout, thus making the
approach more general. The application of this technique
to partial average Asian options in a Black-Scholes
market, and to caplets under the Cox-Ingersoll-Ross
model, provides significative variance reductions (Su and
Fu 2000, 2002).

Along similar ideas, Arouna (2003) has recently
proposed a different stochastic optimization method for
the determination of the optimal sampling density (16).
Here, in contrast to the previous approach, all the
components of the drift vector are independently opti-
mized. The method relies on a truncated version of the
Robbins-Monro algorithm that is shown to converge
asymptotically to the optimal drift, and to provide an
effective variance reduction in a variety of cases.
However, as remarked by the same author, a
critical aspect of the practical implementation of the

yThe use of other discretization schemes does not alter the present discussion.
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Robbins-Monro algorithm is that it depends on the size of
the iterative step. Hence, particular care needs to be taken
in order for the algorithm to be efficient.y

On the other hand, the second strategy, proposed by
Glasserman, Heidelberger, and Shahabuddin (GHS)
(Glasserman et al. 1999a), relies on a saddle point
approximation to minimize the variance of the estimator
(8), or, equivalently, of its second moment (in the original
measure)

m2ð ~#Þ ¼
Z

D
dZW ~#ðZÞGðZÞ2PðZÞ: ð18Þ

In fact, if the payout function G(Z ) is positive definite, by
defining F(Z )¼ logG(Z ) one can approximate equa-
tion (18) with the zero-order saddle point expansion

ð2!Þ&d=2
Z

D
dZ exp½2FðZÞ & ~# + Zþ ~#2=2& Z2=2%

’ C exp max
Z2D

ð2FðZÞ & ~# + Zþ ~#2=2& Z2=2Þ
# $

,

where C is a constant. As a result, within this
approximation, the problem of determining the optimal
change of drift boils down to finding the vector # such
that

max
Z2D

ð2FðZÞ & ~# + Zþ ~#2=2& Z2=2Þ ð19Þ

is minimum. It is easy to show that this is obtained by
choosing ~#? ¼ Z? where Z? is the point that solves the
optimization problem

maxðFðZÞ & Z2=2Þ, ð20Þ

or, equivalently, for which the payout times the original
density, G(Z ) P(Z ), is maximum, i.e. Z? corresponds
to the maximum of the optimal sampling density
(equation (9)). The simplest interpretation of the saddle
point approach is therefore that it approximates the zero
variance density by means of a normal distribution with
the same mode and unit (co)variance.

The saddle point approach can be expected to be
particularly effective in reducing the variance of the
Monte Carlo estimator whenever the log payout func-
tion F(Z ) is close to linear in the portion of the
configuration space where most of the probability mass
of P(Z ) lays. Moreover, GHS have also shown that
stratifying (Glasserman 2004) the d-dimensional random
vector Z along the optimal # provides a spectacular
variance reduction in certain cases (Glasserman et al.
1999a, b). However, whenever the optimal sampling
probability density (9) cannot be accurately represented
by a single Gaussian with the same mode and unit
(co)variance, the saddle point approximation is less
beneficial. In particular, as will also be illustrated in
section 5, this approach turns out to be less effective
whenever the structure of the payout function G(Z ) is
such that the optimal sampling density (9) has a width

which is very different from that of the original
distribution, or is multi-modal.

In the following section we describe an alternative least-
squares strategy that is straightforward to implement and
flexible enough to be applied in a generic Monte Carlo
setting. Indeed, Least-squares Importance Sampling
(LSIS) is not limited to the determination of the optimal
change of drift in a Gaussian model. Instead, it can be
applied to any Monte Carlo simulation provided that a
reasonable guess of the optimal sampling density is
available. For this reason, in the next section we will
momentarily leave the Gaussian framework, and we will
describe the rationale of LSIS in a more general setting.

4. Least-squares Importance Sampling

A practical approach to the search for an effective
Importance Sampling density can be formulated in
terms of a nonlinear optimization problem. For this
purpose, let us consider a family of trial probability
densities, ~P$ðZÞ, depending on a set of N$ real parameters
$ ¼ ð$1, $2, . . . , $N$ Þ. The variance of the estimator corre-
sponding to ~P$ðZÞ (equation (8)) can be written in terms
of the original probability density P(Z ) as

~"2
$ ¼ EP½W$ðZÞG2ðZÞ% & EP½GðZÞ%2, ð21Þ

with W$ðZÞ ¼ PðZÞ= ~P$ðZÞ. Hence, the optimal
Importance Sampling density within the family ~P$ðZÞ is
that for which the latter quantity, or, equivalently, the
second moment (18) or

EP½W$ðZÞG2ðZÞ% ð22Þ

is minimum. The crucial observation is that the Monte
Carlo estimator of this quantity,

m2ð$Þ ’
1

N0
p

XN0
p

i¼1

ðW$ðZiÞ1=2GðZiÞÞ2, Zi ( PðZÞ, ð23Þ

can be interpreted as a nonlinear least-squares fit of a set
of N0

p data points (xi, yi) with a function y¼ f$(x)
parameterized by $, with the correspondence yi! 0,
xi!Zi, and f$(x)!W$(Z )1/2 G(Z ). The latter is a
standard problem of statistical analysis that can be
tackled with a variety of robust and easily accessible
numerical algorithms, such as the so-called Levenberg–
Marquardt method (Press et al. 2002).

Alternatively, to improve the numerical stability of the
least-squares procedure, it is convenient in some situa-
tions to minimize, instead of (22), the pseudo-variance

S2ð$Þ ¼ EP½ðW$ðZÞ1=2GðZÞ & VT Þ2%

’ 1

N0
p

XN0
p

i¼1

ðW$ðZiÞ1=2GðZiÞ & VT Þ2,
ð24Þ

yB. Arouna, Private communication.
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where the constant VT is a guess of the option value.
Indeed, the minimization of (24) is equivalent to that of
the real variance of the estimator (21) as

S2ð$Þ ¼ ~"2
$ þ ðEP½GðZÞ% & VT Þ2: ð25Þ

The algorithm for the determination of the optimal
sampling density within a certain trial family can there-
fore be summarized as it follows:

. generate a suitable number N0
p of replications of

the state variables Z according to the original
probability density P(Z );

. choose a trial probability density ~P$ðZÞ, and an
initial value of the vector of parameters $;

. set xi!Zi, f$(x)!W$(Z )1/2 G(Z ) and yi! 0
(respectively yi!VT) and call a least-squares
fitter, say LSQ[x, y, f$(X), $], providing the
optimal $¼ $? by minimizing the second
moment of the estimator m2($) (equation (23))
(respectively S2($) (equation (24)).

Once the optimal parameters $? have been determined
through the least-squares algorithm, one can perform an
ordinary Monte Carlo simulation by sampling the
probability density ~P$?ðZÞ, and calculating expectation
values according to equation (7).

As will be illustrated with the numerical examples of
section 5, this procedure does not add a significant
overhead to the simulation, because just a relatively small
number of replications N0

p , Np is usually required to
determine the optimal parameter ~$?. This is due to the fact
that the configurations over which the optimization is
performed are fixed. As a result of this form of correlated
sampling (Umrigar et al. 1988), the difference in the
m2($)’s for two sets of values of the parameters being
optimized is much more accurately determined than the

values of the m2($)’s themselves. This rather surprising
feature is rooted in the fact that the minimization of
equation (23) as a means to optimize the trial density,
~P$ðZÞ, can be justified in terms of a genuine maximum
likelihood criteria (Bressanini et al. 2002), and it is
therefore independent on how accurately m2($) approx-
imates the quantity (22). In the stochastic optimization
literature, replacing the minimization of the expectation
value (22) with its deterministic counterpart is also known
as sample path optimization or sample average approx-
imation (Shapiro 1996, Kleywegt et al. 2001).

Clearly, the fact that only a limited number of Monte
Carlo samples is required for the optimization of the trial
density limits the overhead introduced by the LSIS
algorithm. This makes LSIS a practical strategy for
variance reduction.

In the following we will demonstrate the effectiveness
of this simple strategy by applying it to a variety of test
cases, and we will compare the present approach with
those most recently proposed in the literature
(Glasserman et al. 1999a, Su and Fu 2000, 2002,
Arouna 2003).

5. Numerical examples

5.1. European options

We will start by considering European-style options.
These are the simplest possible examples of financial
relevance that allow one to illustrate the LSIS strategy. In
particular, we will consider first standard call and put
options, written on a single underlying asset, X(t),
following the log-normal process (14). Here
N¼M¼L¼ 1 and #t0¼T. The payout function reads
as in equation (15) with !X ! X1 - XðT Þ,
$(X)¼ (X&K)þ and $(X)¼ (K&X)þ for the call and
the put, respectively, and K is the strike price.

In these cases, the probability density P(Z ) is a
univariate Gaussian distribution, and the option value
(1) involves the integration of a function of a single
variable. As discussed in section 2, Importance Sampling
techniques seek a sampling probability density ~P$ðZÞ as
close as possible to the optimal one (equation (9)) (see
figure 1). The simplest choice for ~P$ðZÞ, in this setting, is a
Gaussian distribution of the form (16) (with d¼ 1), so
that the only parameter $ to optimize is the drift ~#.

The LSIS algorithm described in section 4 is particu-
larly straightforward to implement, and involves a pre-
simulation stage in which a set of N0

p standard normal
random numbers are generated and stored, and a least-
squares optimization routine is invoked. As anticipated,
we found that the least-squares fitter was able to
determine successfully the optimal ~# with as little as
N0

p ’ 50 Monte Carlo replications, thus making the
approach useful in practice.

In tables 1 and 2 we compare the results obtained with
LSIS with those obtained by means of the Robbins–
Monro (RM) adaptive Monte Carlo (as quoted by
Arouna (2003)), and the saddle point approach of GHS

Figure 1. Sampling probability density functions for a
European call option with T¼ 1, r¼ 0.05, "¼ 0.3, X0¼K¼ 50
as obtained with LSIS (optimizing just the drift, LSISð ~#Þ, and
both the drift and the volatility, LSIS ð ~#, ~"ÞÞ and the saddle
point approximation (GHS). On this scale the results for LSIS
ð ~#Þ and GHS are indistinguishable. The original (13) and the
optimal (9) sampling densities are also shown for comparison.
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(Glasserman et al. 1999a). Here, as an indicator of the
efficiency gains introduced by the different strategies
of Importance Sampling, we have defined the variance
ratio as

VR ¼ "ðCrude MCÞ
"ðISÞ

! "2

, ð26Þ

where the numerator and denominator are the statistical
errors (for the same number of Monte Carlo paths) of the
Crude and the Importance Sampling estimators, respec-
tively. In particular, for this and the following examples,
we have estimated the uncertainties on the statistical
errors and on the VR’s by performing a standard error
analysis of the outcome of several Monte Carlo simula-
tions for different random number seeds.

We found that the different methods produce a
significant and comparable variance reduction. In parti-
cular, intuitively, the change of drift is more effective for
low volatility, and deep in and out of the money options.
In this case, LSIS and GHS optimized trial densities
~P !#ðZÞ are very similar, as shown in figure 1. This could be
expected as, in this case, the optimal Importance
Sampling density (9) can be effectively approximated by
a Gaussian with the same mode and unit variance, so that
the GHS approach produces accurate results.

However, the LSIS method is not limited to
Importance Sampling strategies based on a pure change

of drift, and one can easily introduce additional
optimization parameters in the trial density. For instance,
in this example it makes sense to introduce the sampling
volatility, ~",

~P ~#, ~"ðZÞ ¼ ð2! ~"2Þ&1=2e&ðZ& ~#Þ2=2 ~"2

: ð27Þ

As illustrated in figure 1, by adjusting both ~# and ~", one
obtains a trial density closer to the optimal one. This
corresponds to an additional variance reduction of up to
over one order of magnitude, as shown in tables 1 and 2.

Another simple example in which the ability to adjust
the width of the sampling density proves effective is the
Butterfly spread option,

$ðXÞ ¼ ðX& K1Þþ & 2ðX& K2Þþ þ ðX& K3Þþ, ð28Þ

with K15K25K3. In this case, a pure change of drift can
only force the expected end point of the sampled paths
X(T ) to fall in the money, K15X(T )5K3. However, for
values of the volatility or the maturity large enough, a
significant fraction of the sampled paths will still result in
a zero payout. Hence, a pure change of drift is not very
effective in reducing the variance. This is illustrated in
table 3. Instead, by quenching the sampled volatility, one
can increase the number of paths falling in the money thus
reducing the variance. For instance, in the example of
table 3, for S0¼ 50 the saddle point change of drift is very
small, and does not alter the variance. Instead, by

Table 1. Comparison between LSIS, the adaptive Robbins–Monro (RM) algorithm (as quoted by Arouna (2003)), and the saddle
point approach of Glasserman et al. (1999a) (GSH): price of a European call option on a log-normal asset (14) for different values of
the volatility ", and of the strike price K. The variance reduction (VR) is defined in Equation (26). The parameters used are r¼ 0.05,
X0¼ 50, T¼ 1.0, and the number of simulated paths is 1 000 000 for Crude MC, LSIS and GHS, and 50 000 for RM. Results for
LSIS obtained by optimizing the drift only (LSISð ~#Þ), and both the drift and the volatility (LSISð ~#, ~"Þ) are reported. The
uncertainties on the least significative digits of the option prices, and variance reductions are reported in parentheses. Note that
Arouna (2003) report no error estimate quoted for the RM results. However, from the ratio of the simulated paths, it is sensible to

estimate the errors on the RM variance reductions as about
ffiffiffiffiffi
20

p
’ 4 times larger than those quoted for LSISð ~#Þ.

Crude MC
LSIS( ~#) LSISð ~#, ~"Þ RM GHS

" K Price Price VR Price VR Price VR Price VR

0.1 30 21.4633(50) 21.46294(49) 104(1) 21.46296(12) 1700(100) 21.47 112(4) 21.46294(50) 100(1)
50 3.4032(39) 3.4019(14) 7.8(1) 3.4046(10) 15(1) 3.41 7.8(4) 3.4018(14) 7.8(1)
60 0.2315(11) 0.23112(19) 33.5(5) 0.23132(12) 84(5) 0.23 31(2) 0.23126(19) 33.5(5)

0.3 30 21.598(15) 21.5912(37) 16.4(1) 21.5984(21) 51(1) 21.63 16.8(4) 21.5973(39) 14.8(2)
50 7.114(11) 7.1169(35) 9.9(5) 7.1159(21) 27(1) 7.12 11(2) 7.1146(35) 9.9(1)
60 3.4954(83) 3.4514(21) 15.6(1) 3.4523(14) 35(1) 3.45 15.2(4) 3.4508(22) 14.2(1)

Table 2. Same as table 1 for a European put option.

Crude MC
LSIS( ~#) LSISð ~#, ~"Þ RM GHS

" K Price Price VR Price VR Price VR Price VR

0.1 40 0.004235(98) 0.0041650(47) 435(6) 0.0041616(41) 571(9) 0.0042 350(24) 0.0041650(47) 435(6)
50 0.9636(19) 0.96419(64) 8.8(1) 0.96436(38) 25(2) 0.97 9.6(4) 0.96385(63) 9.1(1)
60 7.3052(46) 7.3059(19) 5.9(1) 7.3056(11) 17(1) 7.31 6.3(4) 7.3047(19) 5.9(1)

0.3 30 0.13397(83) 0.13445(13) 41(1) 0.13448(10) 69(2) 0.13 38(4) 0.013440(13) 40.8(5)
50 4.6794(65) 4.6761(27) 5.8(1) 4.6767(16) 16.5(5) 4.68 6.2(4) 4.6761(27) 5.8(1)
60 10.5203(97) 10.5236(44) 4.9(1) 10.5266(26) 13.9(2) 10.54 4.8(4) 10.5223(46) 4.4(1)
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allowing the sampling volatility to vary, we obtain
~#? ’ &0:02 and ~"? ’ 0:14, reducing the variance by
more than two orders of magnitude.

5.2. Asian call option

As a second example we consider here the single under-
lying (L¼ 1) arithmetic Asian option, equation (15), with
a call payout, $ðZÞ ¼ e&rT ð !X& KÞþ, and M observation
dates.

In this case, the calculation of the expectation value
(1) involves a multi-dimensional integral over the
probability density (13). However, the implementation
of LSIS is no more difficult than for the European
payout. Indeed, the fact that the sample points Zi are in
the present case M-dimensional vectors is practically
irrelevant for the LSIS procedure. All the least-square
fitter needs is a method that, given a configuration Zi

and the vector $, provides the value of the target
function f$(Zi)¼W$(Zi)

1/2G(Zi).
In order to compare LSIS with the other approaches

proposed in the literature we have considered a Gaussian
trial density of the form of equation (16). Here such
density depends on as many parameters,
~# ¼ ð ~#0, . . . , ~#M&1Þ, as there are sampling dates in the
Euler discretization of the process (12). A typical outcome
of the optimized drift vector produced by the LSIS
procedure is shown in figure 2.

5.2.1. Comparison with the saddle point
approximation. As shown in table 4, LSIS provides a
very effective variance reduction for the Asian call
options considered, similar to those obtained with the
approach of GHS. This could be expected on general
grounds as in the case of the European call and put
options. Indeed, it is not difficult to verify that the single
asset Asian call option generates a single-mode optimal
sampling density Popt(Z )/G(Z )P(Z ), with covariance
close to one. Hence, as discussed in the previous section,
the optimal sampling density can be accurately repre-
sented by a Gaussian distribution, and the saddle point
method provides an accurate approximation of the
optimal drift vector. Indeed, as shown in figure 2, the
optimal drift vectors obtained with the LSIS and the GHS

approaches are quite similar, with an overlap of (0.99
when both are normalized to one.

As anticipated, we found that a few hundred Monte
Carlo configurations and 10–20 iterations of the least-
squares fitter were typically sufficient to determine the
optimal drift vector in (16) for M. 50, thus making the
overhead of the pre-simulation stage rather limited.
However, as the number of time steps or, more generally,
the number of components of the drift vector increases,
the complexity of the optimization problem also
increases. Nevertheless, as suggested by Glasserman et
al.(1999b), one can significantly reduce the computation
time associated with the optimization stage by approx-
imating the drift vector with a continuous function
parameterized by a small number of parameters. These
are, in turn, tuned by the least-square algorithm in order
to determine an approximate optimal drift vector. We
have found that a particularly effective realization of this
approach is to approximate the drift vector by a piecewise
linear function, parameterized by its values where it
changes slope (the so-called knot points). For instance, in
the present examples, optimizing over four to eight
equally spaced knot points provides variance reductions
practically indistinguishable from those obtained by a full
optimization. In addition, the drift vector generally
changes continuously with the market parameters. As a
result, additional computational saving can be obtained

Figure 2. Optimal drift vector as obtained with the LSIS and
the GHS procedures for an arithmetic Asian call option (15),
$ð !XÞ ¼ ð !X& KÞþ on a log-normal asset (14) for M¼ 16, "¼ 0.3,
X0¼K¼ 50, r¼ 0.05, and T¼ 1.0.

Table 3. European butterfly spread option (28) on a log-normal asset (14) for different values of the spot price: comparison
between the saddle point approach of Glasserman et al. (1999a) (GHS), and LSIS with the optimization of both drift and
volatility (LSISð ~#, ~"Þ). The parameters used are r¼ 0.1, K1¼ 45, K2¼ 50, K3¼ 55, T¼ 1.0, "¼ 0.3, and the number of simulated

paths is 1 000 000.

Crude MC
GHS LSISð ~#, ~"Þ

X0 Price Price VR Price VR

30 0.15818(69) 0.15732(33) 4.4(8) 0.157659(40) 298(5)
40 0.4871(11) 0.48666(98) 1.26(1) 0.48703(11) 100(5)
50 0.6274(13) 0.6274(13) 1.00(1) 0.62750(11) 140(1)
60 0.5156(12) 0.5157(10) 1.44(1) 0.515636(93) 166(2)
70 0.32961(97) 0.32875(67) 2.10(1) 0.329281(73) 177(2)
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by starting the pre-simulation from a drift vector
optimized for a case with a similar set of parameters.

As anticipated in section 3.1, Importance Sampling can
also be naturally combined with Stratified Sampling by
choosing the optimal drift vector as the stratification
direction (for further details, see Glasserman et al. (l999a)).
This, as shown in table 5, gives rise to a further reduction of
the variance, which can be of several order of magnitude,
depending on the option parameters, thus resulting in quite
remarkable savings in computational time.

5.2.2. Comparison with adaptive Monte Carlo
approaches. It is also interesting to compare the LSIS
results with those obtained by means of the recently
proposed adaptive Monte Carlo methods briefly dis-
cussed in section 3.1. As illustrated in table 6, we found
that our approach achieves variance reductions similar to
those obtained with the Robbins–Monro algorithm of
Arouna (2003). However, for the example considered,
LSIS appears to perform better for small values of the
volatility and deep in and out of the money options. This
is particularly remarkable when considering that the pre-
simulation stage required by the Robbins–Monro algo-
rithm involves sampling a number of Monte Carlo paths
much larger than that required by the LSIS approach. For
instance, in the present example, the number of iterations

quoted by Arouna (2003) is 400 000, while the LSIS
results were obtained by sampling just N0

p ’ 400 config-
urations. In addition, LSIS does not have any exogenous
parameter to be fine-tuned in order to achieve an efficient
optimization, thus making the approach easier to be
automated.

Finally, in order tomake a comparisonwith the adaptive
Monte Carlo approach of Su and Fu (2000, 2002), we have
slightly modified the Asian option example and considered
a payout depending on a partial average

!X ¼ 1

M&M0

XM

i¼M0

Xi, ð29Þ

where M0 is the time step index corresponding to the
first observation. The results we have obtained in this
case are reported in table 7, and show that LSIS
generally outperforms the approach of Su and Fu
(2000, 2002). This is expected as LSIS involves a more
general class of sampling densities (16) as the change of
drift is not constrained to be uniform along the
simulation path.

5.3. Multi-modal examples

All the examples considered in the previous sections were
characterized by a single mode optimal sampling

Table 4. Comparison between LSIS and the saddle point approach of Glasserman et al. (1999a) (GSH): price of Asian options (15)
on a log-normal asset (14) for different values of the volatility ", the strike K, and the number of observation dates M. The

parameters used are r¼ 0.05, X0¼ 50, T¼ 1.0, and the number of simulated paths is 1 000 000.

Crude MC
LSIS GHS

M " K Price Price VR Price VR

16 0.1 45 6.0565(29) 6.05522(88) 10.86(5) 6.05537(89) 10.62(5)
50 1.9198(22) 1.91994(80) 7.56(5) 1.91914(83) 7.03(5)
55 0.20272(74) 0.20235(16) 21.4(2) 0.20237(16) 21.4(2)

16 0.3 45 7.1545(77) 7.1531(26) 8.8(1) 7.1529(27) 8.13(1)
50 4.1730(63) 4.1714(20) 9.9(1) 4.1712(21) 9.0(1)
55 2.2135(48) 2.2115(13) 13.6(7) 2.2116(14) 11.8(7)

64 0.1 45 5.9967(28) 5.99510(87) 10.4(5) 5.99500(85) 10.9(5)
50 1.8467(21) 1.84522(78) 7.2(3) 1.84525(81) 6.7(3)
55 0.17519(67) 0.17448(14) 23(2) 0.17443(14) 23(1)

64 0.3 45 7.0257(75) 7.0204(25) 9.0(2) 7.0204(26) 8.3(2)
50 4.0271(61) 4.0222(19) 10.3(5) 4.0220(20) 9.3(5)
55 2.0849(46) 2.0794(13) 12.5(5) 2.0794(13) 12.5(5)

Table 5. Importance Sampling plus stratification. Comparison between LSIS and the GHS approach of Glasserman et al. (1999a)
for the Asian option of table 4.

LSISþ SS GHSþ SS

M " K Price VR Price VR

16 0.3 45 7.15284(25) 950(20) 7.15266(24) 1030(10)
50 4.17122(18) 1225(15) 4.17118(18) 1225(30)
55 2.21183(11) 1900(100) 2.21183(11) 1900(50)

64 0.3 45 7.02075(23) 1060(30) 7.02076(23) 1060(30)
50 4.02251(17) 1290(30) 4.02250(17) 1290(30)
55 2.07967(13) 1320(100) 2.07965(12) 1470(100)
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density (9). In these cases, an Importance Sampling
strategy based on the Gaussian trial density (16) or (27)
provides good results. In this section we will consider
instead option pricing problems that are characterized by
multi-modal optimal sampling densities. These are very
common in practice, and typically arise if the payout
function G(Z ) is not monotonic, or for claims written on
multiple assets. We will show that, in these cases, a simple
Importance Sampling strategy based on a pure change of
drift of a Gaussian density proves ineffective. In contrast,
LSIS allows one to work with trial densities tailored to the
problem at hand, including multi-modal distributions. As
in section 5.1, we begin by illustrating the effectiveness of
LSIS with a simple European-style payout.

5.3.1. Straddle. A simple example of a pricing problem
characterized by a multi-modal sampling density is the
European straddle:

$ðXÞ ¼ ðX& KÞþ þ ðK& XÞþ: ð30Þ

As illustrated in figure 3, the corresponding optimal
sampling density, Popt(Z )%G(Z ) exp (&Z2/2), has two
well-separated maxima. As a result, saddle point
approaches based on a Gaussian distribution, e.g.
centered on the higher of the two modes, provide a
poor approximation of the optimal sampling density.
Indeed, as shown in table 8, the saddle point method
increases the variance with respect to the crude Monte
Carlo estimator. On the contrary, LSIS based on the
simple trial density (16) provides a small shift of the drift
towards the higher mode of the optimal density (figure 3).
This can be easily understood. In fact, the best way to
approximate a bi-modal distribution by means of a
Gaussian density is to center the latter around the
center of mass of the former, in this case ~# ’ 0:24. Yet,
since the two maxima of the optimal density are well
separated, its overlap with the trial density is still rather
poor. As a result, LSIS based on a trial density of the
form (16) produces only a small variance reduction.
Better results can be obtained by adjusting the width of
the trial density. Indeed, as also illustrated in figure 3,

Table 6. Comparison between LSIS and the adaptive Robbins–Monro (RM) method (as quoted by Arouna (2003)) for the price of
an Asian call option (15) on a log-normal asset (14) for different values of the volatility ", and of the strike price K. The parameters
used are r¼ 0.1, X0¼ 50, T¼ 0.5, and the number of simulated paths is 1 000 000 for Crude MC and LSIS, and 800 000 for RM.

The uncertainties on the RM variance reductions are rough estimates based on the number of simulated paths.

Crude MC
LSIS RM

M " K Price Price VR Price VR

20 0.1 40 10.7820(21) 10.78243(22) 91(2) 10.73 58(2)
50 1.6045(16) 1.60398(61) 6.9(1) 1.53 7.0(1)
55 0.04919(29) 0.049204(54) 28.8(5) 0.037 6.0(5)

0.3 40 10.8284(62) 10.8277(17) 13(1) 10.77 14(1)
50 3.1373(44) 3.1352(15) 8.6(1) 2.99 9.0(1)
60 0.3790(16) 0.37861(35) 20.9(5) 0.320 28.0(5)

Table 7. Comparison between LSIS and the adaptive approach of Su and Fu (SF) (as quoted by Su and Fu (2000)) for the price of a
partial average Asian call option (15) and (29) on a log-normal asset (14) for different values of the volatility ", and of the strike
price K. The parameters used are r¼ 0.05, X0¼ 100, T¼ 1.0, M¼ 365, M0¼ 305, and the number of simulated paths is 1 000 000 for
Crude MC and LSIS, and 50 000 for SF. The uncertainties on the SF variance reductions are rough estimates based on the number

of simulated paths.

Crude MC
LSIS SF

" K Price Price VR Price VR

0.2 100 9.792(14) 9.7816(46) 9.3(1) 9.747 6.7(3)
110 5.413(11) 5.4256(33) 11.1(1) 5.397 8.2(3)
120 2.7758(77) 2.7669(20) 14.8(2) 2.730 11.0(6)
130 1.3038(52) 1.3096(12) 18.8(1) 1.284 17.0(4)
140 0.5861(35) 0.58298(61) 33(1) 0.575 25(3)
150 0.2421(22) 0.24592(30) 54(4) 0.241 44(12)
160 0.1003(14) 0.09973(14) 100(8) 0.0980 85(20)
170 0.03761(84) 0.039000(64) 172(20) 0.0380 173(80)

0.3 100 13.323(21) 13.3527(65) 10.4(5) 13.295 7(1)
110 9.182(18) 9.1564(54) 11.1(5) 9.103 8(1)
120 6.1041(15) 6.1258(39) 14.8(5) 6.059 10(1)
130 4.020(12) 4.0034(31) 15.0(5) 3.985 12(3)
140 2.5624(98) 2.5769(23) 18.1(7) 2.556 15(2)
150 1.6410(80) 1.6325(13) 38(1) 1.603 22(2)
160 1.0143(62) 1.02355(90) 47(2) 1.006 30(5)
170 0.6408(50) 0.63681(61) 67(3) 0.623 36(6)
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by increasing the standard deviation of the sampling
density one achieves a better approximation of the
optimal density. This leads to a sizable reduction of the
variance of a factor of 3.

An even better ansatz for the optimal distribution
is clearly represented by a bi-modal trial density of the
form

~PðZÞ ¼ ð2!Þ&d=2½wae
&ðZ&#aÞ2 þ wbe

&ðZ&#bÞ2 %, ð31Þ

where waþwb¼ 1 (and d¼ 1 in this specific case) which
can be optimized over #a,#b, and wa. The simulation of a
density of this form is straightforward as it simply implies
choosing on each Monte Carlo step one of the two
Gaussian components in (31), and sampling a configura-
tion Zi according to it. This can be done by extracting an
auxiliary uniform random number & 2 [0, 1], and extract-
ing Zi according to the first Gaussian component if &5wa,
and according to the second otherwise. The optimized
distribution obtained using this bi-modal trial density is

sketched in figure 3 and corresponds to a further sizable
reduction of the variance (table 8). Remarkably, the same
form of sampling density (31) can also be used for Asian-
style straddles (here d¼M,#a and #b are M-dimensional
vectors) and produces a very effective variance reduction,
as illustrated in table 9.

5.3.2. Basket call options. Basket options are another
very common class of contingent claims that can give rise
to multi-modal optimal densities. This is illustrated in
figure 4 for a very simple European-style call option on
the maximum of L¼ 2 underlying assets following the
process (14)

$ðXÞ ¼ ðmaxðX1,X2Þ & KÞþ: ð32Þ

Also in this case, LSIS based on a bi-modal trial density
of the form (31) provides a significant variance reduction
that persists when introducing Asian features in the
payout (see table 10). We obtained similar results for

Figure 3. Sampling probability density functions for a straddle option (30) with r¼ 0.05, X0¼K¼ 50, "¼ 0.3, T2¼ 1, as obtained
with LSIS (optimizing just the drift, LSIS ð ~#Þ, both the drift and the volatility, LSIS ð ~#, ~"Þ, and using the bi-modal trial density (31),
LSISbm) and the saddle point approximation (GHS). The original (13) and the optimal (9) sampling densities are also shown for
comparison.

Table 8. Importance Sampling results for the European-style straddle (30) obtained by means of the saddle point approximation
(GHS) and LSIS, with the optimization of the drift (LSIS( ~#)), and the drift and the volatility (LSISð ~#, ~"Þ). The parameters used are
r¼ 0.05, X0¼K¼ 50, "¼ 0.3, T¼ 1, and correspond to the probability densities sketched in figure 3. The number of simulated paths

is 1 000 000.

Crude MC
GHS LSIS( ~#) LSISð ~#, ~"Þ

Price Price VR Price VR Price VR

11.803(10) 11.800(33) 0.10(1) 11.8038(88) 1.30(1) 11.8047(55) 3.00(2)
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Table 9. Variance reduction obtained with LSIS for a European (M¼ 1) and Asian style (M¼ 16 and 64) straddle (30) using the
bi-modal sampling density (31). The parameters used are r¼ 0.05, X0¼K¼ 50, "¼ 0.3, T¼ 1, and correspond for M¼ 1 to the

probability densities sketched in figure 3. The number of simulated paths is 1 000 000.

M Crude MC
LSIS

Price Price VR

1 11.803(10) 11.8009(44) 5.17(5)
16 7.0604(58) 7.0559(26) 4.98(5)
64 6.8200(55) 6.8163(26) 4.47(5)

-2.0

-1.0

0.0

1.0

2.0

-2.0-1.8-1.7-1.5-1.3-1.2-1.0-0.8-0.7-0.5-0.3-0.20.00.20.30.50.70.81.01.21.31.51.71.82.0

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

P(Z)

Z1

Z2

Figure 4. Optimal sampling density (Equation (9)) for the European basket call option (32) for r¼ 0.05, K¼ 100,Xð1Þ
0 ¼ 100,

Xð2Þ
0 ¼ 105, "1¼ "2¼ 0.3, T¼ 1.

Table 10. Importance Sampling results for the Asian-style basket option (32) obtained by means of LSIS, using the bi-modal
sampling distribution (31). The parameters used are r¼ 0.05, T¼ 1, Xð1Þ

0 ¼ 100, Xð2Þ
0 ¼ 105, "1¼ 0.3, "2¼ 0.3, and correspond

(for K¼ 100 and M¼ 1) to the probability densities sketched in figure 4. The number of simulated paths is 500 000.

Crude MC
LSIS

M K Price Price VR

1 90 34.555(41) 34.587(14) 8.58(7)
100 26.621(39) 26.589(15) 6.76(3)
110 19.749(36) 19.776(13) 7.7(1)

16 90 24.876(24) 24.8700(87) 7.6(1)
100 16.428(22) 16.4081(81) 7.4(1)
110 9.711(19) 9.6918(68) 7.8(1)

32 90 24.537(23) 24.5539(84) 7.50(5)
100 16.082(22) 16.0734(82) 7.2(1)
110 9.381(18) 9.3752(68) 7.0(1)
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other multi-asset options by generalizing the form of the
trial density (31).

6. Conclusions

In this paper we have described a simple Importance
Sampling technique based on a least-squares minimiza-
tion of straightforward implementation. The resulting
strategy, dubbed Least-square Importance Sampling
(LSIS), provides an effective variance reduction technique
that lends itself to a variety of applications.

We have presented several numerical examples in a
diffusive setting, and we have shown that LSIS, when
restricted to the optimization of the drift of a diffusion
process, provides variance reductions similar to those
obtained with existing approaches (Glasserman et al.
1999a, Su and Fu 2000, 2002, Arouna 2003). However,
LSIS is not limited to the determination of the optimal
mean of a Gaussian sampling distribution. This is
important when the ability to adjust the width of such a
distribution, or to sample non-Gaussian and multi-modal
densities, is critical to mimic the form of the optimal
sampling density and to obtain sizable variance reductions.

The LSIS strategy can be applied to any Monte Carlo
setting provided that a reasonable ansatz for the optimal
sampling density is available. This makes LSIS a flexible
Importance Sampling approach, that can be used across a
variety of financial applications, ranging from value at
risk (VaR) estimation, to portfolio credit risk manage-
ment. This is currently the object of further investigation.
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