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General Concepts American/Bermudan Options and Exercise Policies

European vs. American/Bermudan Options

I Contrary to European options, American and Bermudan options can
be exercised on multiple days up to trade expiry.

I Bermudan options can be exercised on a discrete set of dates while
American options can be exercised in continuous time intervals.

I More choices, more value:

European ≤ Bermudan ≤ American

I In the following we will mainly restrict our discussion to the case of
Bermudan options as it is the one of more relevance in practice.

I The case of American options can be obtained as a limiting case
when the number of exercise dates per unit time tends to infinity.
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General Concepts American/Bermudan Options and Exercise Policies

Exercise Policies and Stopping Times

I We indicate with T1, . . . ,TB , the exercise dates of the option and
with D(t) the deterministic set of exercise dates Ti larger or equal to
time t, namely D(t) = {Ti ≥ t}.

I An exercise policy is represented mathematically by a stopping time
taking values in D(t). Recall that a random variable τ is a stopping
time if the event {τ ≤ t} can be determined using only the
information available up to time t.

I We indicate with T (t) the set of stopping times taking values in D(t).

I We assume t < TB−1 as in the last period the Bermudan option
becomes European.
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General Concepts Optimality and Dynamic Programming

Optimal Exercise

I A rational investor will exercise the option that she holds in such a
way to maximize its economic value.

I As a result, the value of a Bermudan option is the supremum of the
option value over all the possible exercise policies, namely

V (t)

N(t)
= sup

τ∈T (t)
Et

[E (τ)

N(τ)

]
where E (t) is the exercise value of the option, and N(t) is the chosen
numeraire.

I In this equation V (t) is the value of the option with early exercise
conditional on exercise not taking place strictly before time t.
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General Concepts Optimality and Dynamic Programming

Continuation or Hold Value

I Indicate with η(t) the smallest integer such that Tη(t)+1 > t.

I The hold value Hη(t) (Tη(t) ≤ t < Tη(t)+1) is the value of the
Bermudan option when the exercise dates are restricted to D(Tη(t)+1)

Hη(t)

N(t)
= Et

[V (Tη+1)

N(Tη+1)

]
I Clearly Hη(t) = V (t) for Tη < t < Tη+1, since there are no exercise

opportunities in this interval.

I Instead Hη(Tη) can be interpreted as the hold value of the Bermudan
option at time Tη, i.e., the value of the option if we decide not to
exercise at time Tη.
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General Concepts Optimality and Dynamic Programming

Optimal Exercise and Dynamic Programming

I The option holder following an optimal exercise policy will exercise
her option if the exercise value is larger than the hold value

V (Tη) = max(E (Tη),Hη(Tη))

I This, when combined with the definition of hold value, leads to the
so-called dynamic programming or Bellman principle formulation,
namely,

Hη(t)

N(t)
= Et

[
max

(E (Tη+1)

N(Tη+1)
,

Hη+1(Tη+1)

N(Tη+1)

)]
for Tη ≤ t < Tη+1, and η = 1, . . . ,B − 1.
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General Concepts Optimality and Dynamic Programming

Optimal Exercise Time

I Starting from the terminal condition HB(TB) ≡ 0, this defines a
backward iteration in time for Hη(Tη).

I By definition, this is also equal to V (t) if t is not an exercise date.

I Conversely, if t is an exercise date, t = Tη, then

V (Tη) = max(E (Tη),Hη(Tη))

I The dynamic programming formulation above implies that the
stopping time defining optional exercise (as seen as time t) is given by

τ? = inf[Ti ≥ t : E (Ti ) ≥ Hi (Ti )]
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General Concepts Optimality and Dynamic Programming

Example: American put option

I Consider an American put option struck at K on a stock S(t):

dS(t)

S(t)
= rdt + σdWt

where r is the (constant) instantaneous risk free rate of interest, σ is
the volatility and Wt is a standard Brownian motion.

I The value of the Bermudan put option can be expressed as

V (t) = sup
τ∈T (t)

Et

[
e−r(τ−t)(K − S(τ))+

]
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General Concepts Optimality and Dynamic Programming

Example: American put option (cont’d)

I The optimal exercise time is given by

τ? = inf[t ∈ D(t) : (K − S(t))+ ≥ H(t)]

I Since H(t) is function itself of S(t) the latter condition can be
expressed equivalently as

τ? = inf[t ∈ D(t) : S(t) < b?(t)]

for a deterministic function b?(t), assuming the natural interpretation
of exercise boundary.
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General Concepts Optimality and Dynamic Programming

Example: American put option (cont’d)

Figure: Exercise Boundary for the American Put option on a single stock (taken
from Ref. [1]).
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General Concepts Monte Carlo Challenges

Monte Carlo challenges

I The dynamic programming recursion can be easily implemented in the
context of deterministic numerical methods (multinomial trees or
PDEs), which are based on backward induction.

I These are limited by the curse of dimensionality.

I On the other hand, in the context of Monte Carlo methods, the paths
describing the time evolution of the underlying risk factors are
generated forward in time, thus making the direct application of
backward induction impossible.

I This makes pricing Bermudan options, whose dimensionality is too
high to be treated by deterministic numerical methods, very
challenging.
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Variational Principle and Lower Bound Methods

Variational Principle and Lower Bound Methods

I An immediate consequence of

V (t)

N(t)
= sup

τ∈T (t)
Et

[E (τ)

N(τ)

]
is that for any stopping time τ ∈ T (t)

V (t)

N(t)
≥ Et

[E (τ)

N(τ)

]
I As a result, a lower bound for the value of the Bermudan option V (t)

can be computed by means of Monte Carlo through any exogenous
guess for the optimal exercise strategy τ?.
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Variational Principle and Lower Bound Methods Parametric Exercise Boundary Methods

Parametric Exercise Boundary Methods

I Parametric lower bound methods involve a user supplied specification
of a parametric stopping rule τθ ∈ Tθ(t) where θ ∈ Θ ⊂ RNθ is a Nθ

dimensional parameter vector.

I Due to the variational principle, for any value of θ the stopping rule
generates a lower bound, Vθ(t), of the true value of the Bermudan
option, V (t).

I Clearly, the best approximation of such value within the chosen class,
is the one for which the value Vθ(t) is the largest, namely

Vθ?(t) = sup
θ

Vθ(t)
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Variational Principle and Lower Bound Methods Parametric Exercise Boundary Methods

Algorithm

Step 1 Generate n independent paths of the underlying Markov
process X (k) = (X (k)(Tη(t)+1), . . . ,X (k)(TB), for k = 1, . . . , n. For

path k , let τ (k)(θ) be the exercise time suggested by the stopping rule
for the given value of the parameter θ.

Step 2 For each path k, set:

E
(k)
θ = E (X (τ

(k)
θ ))

V
(k)
θ =

E
(k)
θ

N(X (τ
(k)
θ ))
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Variational Principle and Lower Bound Methods Parametric Exercise Boundary Methods

Algorithm (cont’d)

Step 3 Return:

V̄θ(t) = N(t)× 1

n

n∑
k=1

V
(k)
θ

Step 4 Find:

θ? = arg sup
θ∈Θ

V̄θ(t)

Step 5 Return:
Ṽθ?(t) = sup

θ∈Θ
V̄θ(t)
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Variational Principle and Lower Bound Methods Parametric Exercise Boundary Methods

Lower Bound?

I The value Ṽθ?(t) is an estimate of the true value of the Bermudan
option V (t). However we do not know whether it is a lower bound or
an upper bound.

I This is because while Vθ?(t) ≤ V (t), because of the variational
principle, the estimator Ṽθ?(t) is instead biased high with respect to
Vθ?(t).

I Indeed, as a result of Jensen’s inequality:

E[Ṽθ?(t)] = E[sup
θ∈Θ

V̄θ(t)] ≥ sup
θ∈Θ

E[V̄θ(t)] = sup
θ∈Θ

Vθ(t) = Vθ?(t)

so that:
E[Ṽθ?(t)] ≥ Vθ?(t) ≤ V (t)
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Variational Principle and Lower Bound Methods Parametric Exercise Boundary Methods

Algorithm: Lower Bound!

I In order to avoid this problem on can replace Step 5 with the
following two steps:

Step 5′ Draw N independent paths for X (k) and compute for each path:

E
(k)
θ? = E (X (τ

(k)
θ? ))

V
(k)
θ? =

E
(k)
θ?

N(X (τ
(k)
θ ))

Step 6 Return:

V̄θ?(t) = N(t)× 1

N

N∑
k=1

V
(k)
θ?

I Since E[V̄θ?(t)] = Vθ?(t) ≤ V (t), this provides a genuine lower
bound estimator.
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Variational Principle and Lower Bound Methods Parametric Exercise Boundary Methods

A Useful Parameterization of the Exercise Boundary

I The optimization in Step 4 above can be simplified whenever the
parameter θ decomposes into B − 1 sub-components, with the i-th
subset parametrizing the exercise decision at time Ti , i.e.
θ = (θη(t)+1, . . . , θB−1) with each θi possibly a vector itself.

I For instance, this is the case for the so-called moneyness stopping rule

τ(θ) = inf
i>η(t)

[Ti : E (X (Ti )) > θi ]

prescribing early exercise whenever the option is in the money ‘deeply
enough’.
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Variational Principle and Lower Bound Methods Parametric Exercise Boundary Methods

A Useful Parameterization of the Exercise Boundary
(cont’d)

I This can be seen as a simplification of the optimal stopping rule

τ? = inf[Ti ≥ t : E (Ti ) ≥ Hi (Ti )]

in which the hold value, Hi (X (Ti )), is replaced by the constant θi .
I In this case, Step 4 above is replaced by the following step:

Step 4′ Proceeding backwards in time, for i = B − 1, . . . , η(t) + 1 find θ̃i by
keeping (θ̃i+1, . . . , θ̃B−1) fixed and maximizing:

Ṽ (t) = N(t)×
n∑

k=1

E (X (τ̃i ))

N(τ̃i )
(1)

where τ̃i = τ̃(θi , θ̃i+1 . . . , θ̃B−1) ∈ D(Ti ).
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Variational Principle and Lower Bound Methods Parametric Exercise Boundary Methods

A Useful Parameterization of the Exercise Boundary
(cont’d)

Note that:

I Step 4′ does not involve repeating the Monte Carlo simulation from
scratch. Rather the same set of n paths can be reused.

I With a finite number of paths the one in Step 4′ is a non-smooth
optimization problem and is best solved by an iterative search rather
than a derivatives based approach.

I There is no guarantee the algorithm in Step 4′ produces the optimum
θ? = arg supθ∈Θ V̄θ(t). This is because each θ̃i is optimized assuming
exercise only after Ti . In reality, only a subset of the paths would
arrive to Ti without triggering early exercise beforehand.
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Variational Principle and Lower Bound Methods Parametric Exercise Boundary Methods

Exercise 1

Consider a Bermudan option on the maximum of two assets following a geometric Brownian
motion of the form

dSi (t)

Si (t)
= (r − δ)dt + σdW i

t

where r = 5%, δ = 10%, σ = 20% and S1(0) = S2(0). The two assets are assumed
independent. The (undiscounted) payoff upon exercise at time Ti is

(max(S1(t), S2(t))− K)+

where K = 100 is the strike price. The maturity of the option is TB = 3 and can be exercised at
nine equally spaced dates Ti = i/3 with i = 1, . . . , 9. The exact option prices obtained are
13.90, 8.08 and 21.34 for Si (0) = 100, 110 and 90, respectively. Use the parametric lower bound
method and the moneyness stopping rule to estimate the value of the option (use both a single
value of θ and a different value of θ for each exercise date). Compare the results obtained with
Steps 1 to 5 and Steps 1 to 6 (through Step 5′) of the algorithm above.
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Variational Principle and Lower Bound Methods Regression Approaches

Regression Approaches

I The optimal exercise strategy defined by

τ? = inf[Ti ≥ t : E (Ti ) ≥ Hi (Ti )]

can be approximated by constructing an estimate of the hold value
Hi (Ti ), i = η(t) + 1, . . . ,B − 1.

I In general, in a Markov setting the hold value is a function of the
state vector at time Ti

Hi (x) = N(x)× E
[V (X (Ti+1))

N(X (Ti+1))

∣∣∣X (Ti ) = x
]
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Variational Principle and Lower Bound Methods Regression Approaches

Regression Approaches (cont’d)

I Regression based approaches are based on the following ansatz for the
hold value

Ĥi (x) =
d∑

j=1

βijψj (x)

for a set of d basis functions ψj (x) and coefficients βij . Equivalently,
this can be written in matrix form as

Ĥi (x) = βT
i ψ(x) = ψT (x)βi

where βi = (β1, . . . , βd )T and ψ(x) = (ψ1(x), . . . , ψd (x))T .
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Variational Principle and Lower Bound Methods Regression Approaches

Regression Approaches (cont’d)

I Multiplying by ψT (X (Ti )), using the definition of hold value and
taking unconditional expectations one gets

E
[
βT

i ψ(X (Ti ))ψT (X (Ti ))
]

= E
[N(X (Ti ))V (X (Ti+1))

N(X (Ti+1))
ψT (X (Ti ))

]
which gives

βi = Ψ−1
i Ωi

where we define the d × d matrix

Ψi = E
[
ψ(X (Ti ))ψT (X (Ti ))

]
and the d × 1 vector

Ωi = E
[N(X (Ti ))V (X (Ti+1))

N(X (Ti+1))
ψ(X (Ti ))

]
Luca Capriotti Monte Carlo Methods for American Options 25 / 46



Variational Principle and Lower Bound Methods Regression Approaches

Regression Approaches (cont’d)

I These equations provide a straightforward recipe to compute the
regression coefficients βi by substituting Ψ and Ω with their sample
average over n Monte Carlo replications, Ψ̄i and Ω̄i .

I More explicitly, considering a set of Monte Carlo paths of the Markov
state variable X sampled on the Bermudan exercise dates(

X (k)(Tη(t)+1), . . . ,X (k)(TB−1)
)

for k = 1, . . . , n one could compute the sample averages

Ψ̄i =
1

n

n∑
k=1

ψ(X (k)(Ti ))ψT (X (k)(Ti ))

Ω̄i =
1

n

n∑
k=1

N(X (k)(Ti ))V̂ (X (k)(Ti+1))

N(X (k)(Ti+1))
ψ(X (k)(Ti ))
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Variational Principle and Lower Bound Methods Regression Approaches

Regression Approaches (cont’d)

I In the last equation V̂ is given by

V̂ (X (k)(Ti )) = max
(
E (X (k)(Ti ), Ĥi (X (k)(Ti ))

)
for i = η(t) + 1, . . .B − 1, where we have replaced the true value H
with the estimate Ĥ according to

Ĥi (X (k)(Ti )) =
d∑

j=1

βijψj (X (k)(Ti ))

I However this depends on the yet to be determined coefficients βi .
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Variational Principle and Lower Bound Methods Regression Approaches

Backward Induction

I As a result, the calculation of the sample averages Ψ̄i and Ω̄i needs
to be performed backwards. Indeed, starting from the penultimate
Bermudan exercise date TB−1 on which

V̂ (X (k)(TB)) = max
(
E (X (k)(TB)), 0

)
one can compute

β̄B−1 = Ψ̄−1
B−1Ω̄B−1

which allows one to compute for i = B − 2 the estimate of the hold
value

ĤB−1(X (k)(TB−1)) =
d∑

j=1

β̄B−1jψj (X (k)(TB−1))

required to compute the estimate V̂ (X (k)(TB−1)). This can be
iterated until we get to i = η(t) + 1...
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Variational Principle and Lower Bound Methods Regression Approaches

Algorithm

Step 1 Simulate n independent paths (k = 1, . . . , n)(
X (k)(Tη(t)+1), . . . ,X (k)(TB−1)

)
Step 2 At final expiry compute the value:

V̂ (X (k)(TB)) = max(E (X (k)(TB)), 0)

Step 3 For i = B − 1, . . . , η(t) + 1
a) Compute:

Ψ̄i =
1

n

n∑
k=1

ψ(X (k)(Ti ))ψT (X (k)(Ti ))

b) Compute:

Ω̄i =
1

n

n∑
k=1

N(X (k)(Ti ))V̂ (X (k)(Ti+1))

N(X (k)(Ti+1))
ψ(X (k)(Ti ))

using the value of V̂ (X (k)(Ti+1)) computed in the previous time step.
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Variational Principle and Lower Bound Methods Regression Approaches

Algorithm (cont’d)

c) Compute by matrix inversion and multiplication:

β̄i = Ψ̄−1
i Ω̄i

d) Set for the estimate of the hold value at time Ti :

Ĥi (X (k)(Ti )) = β̄iψi (X (k)(Ti ))

e) Set for the estimate of the Bermudan option value at time Ti :

V̂ (X (k)(Ti )) = max(E (X (k)(Ti )), Ĥi (X (k)(Ti )))

Step 4 Compute:

V̄ (t) = N(t)× 1

n

n∑
i=1

V̂ (X (k)(Tη(t)+1))

N(X (k)(Tη(t)+1))
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Variational Principle and Lower Bound Methods Longstaff-Schwartz Method

Longstaff-Schwartz Method

I A modification of this algorithm was proposed by Longstaff and
Schwartz and entails replacing

V̂ (X (k)(Ti )) = max(E (X (k)(Ti )), Ĥi (X (k)(Ti )))

in Step 3e, with

V̂ (X (k)(Ti )) =

{
E (X (k)(Ti )) if E (X (k)(Ti )) > Ĥi (X (k)(Ti )))

V̂ (X (k)(Ti+1))N(X (k)(Ti ))/N(X (k)(Ti+1)) otw

which in the examples considered was shown to lead to more accurate
results.

I Similarly to the parametric exercise boundary methods, regression
based approaches produce lower bound estimate of the true
Bermudan option value if this is computed by means of a second
simulation in which the continuation value estimated in the first
simulation is used to determine early exercise.
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Variational Principle and Lower Bound Methods Longstaff-Schwartz Method

Exercise 2

Consider the Bermudan option of Exercise 1. Compare the results obtained with the regression

based approach (including the modification of Longstaff and Schwartz). Use basis functions of

the form Sα1 Sβ2 . Include results obtained directly from the backward induction Steps 1-4 in this

Section and those obtained by means of a second independent simulation using the hold value

estimated by means of the backward induction in the first simulation.
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Upper Bound Method Super-martingales and Doob-Mayer Decomposition

Super-martingale Property

I The pricing problem for American or Bermudan option admit a ‘dual’
formulation in which it can be expressed as a minimization problem.

I The dynamic programming equations

Hη(t)

N(t)
= Et

[V (Tη+1)

N(Tη+1)

]
V (Tη) = max(E (Tη),Hη(Tη))

imply

V (X (Ti ))

N(X (Ti ))
≥ E

[V (X (Ti+1))

N(X (Ti+1))

∣∣∣X (Ti )
]
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Upper Bound Method Super-martingales and Doob-Mayer Decomposition

Super-martingale Property

I Hence the discounted value of a Bermudan option,
V (X (Ti ))/N(X (Ti )), is a super-martingale.

I In addition one also has:

V (X (Ti ))

N(X (Ti ))
≥ E (X (Ti ))

N(X (Ti ))

I In fact, the discounted value of a Bermudan option is the minimal
super-martingale dominating the discounted exercise value
E (X (Ti ))/N(X (Ti )).
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Upper Bound Method Duality and Upper Bounds

Duality and Upper Bounds

I Consider a martingale M with M(t) = Et [M(s)] = 0.

V (t)

N(t)
= sup

τ∈T (t)
Et

[E (τ)

N(τ)

]
= sup

τ∈T (t)
Et

[
E (τ)

N(τ)
+ M(τ)−M(τ)

]
= sup

τ∈T (t)
Et

[E (τ)

N(τ)
−M(τ)

]
I Hence, using Jensen’s inequality:

V (t)

N(t)
= sup

τ∈T (t)
Et

[E (τ)

N(τ)
−M(τ)

]
≤ Et

[
max
τ∈D(t)

(
E (τ)

N(τ)
−M(τ)

)]
As a result an upper bound on the value of the Bermudan option is

V (t)

N(t)
≤ inf

M(t)=0
Et

[
max
τ∈D(t)

(
E (τ)

N(τ)
−M(τ)

)]
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Upper Bound Method Duality and Upper Bounds

Duality and Upper Bounds (cont’d)

I Interestingly, we can show that

V (t)

N(t)
≤ inf

M(t)=0
Et

[
max
τ∈D(t)

(
E (τ)

N(τ)
−M(τ)

)]
holds with equality i.e., it is possible to find M? such that

V (t)

N(t)
= Et

[
max
τ∈D(t)

(
E (τ)

N(τ)
−M?(τ)

)]
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Upper Bound Method Duality and Upper Bounds

Duality and Upper Bounds (cont’d)

I This is a consequence of the so called Doob-Mayer decomposition for
super-martingales:

V (s)

N(s)
=

V (t)

N(t)
+ M?(s)− A(s)

where A(s) is a non decreasing predictable process with A(t) = 0.
Indeed, choosing for M the martingale component above

V (t)

N(t)
≤ Et

[
max
τ∈D(t)

(
E (τ)

N(τ)
−M?(τ)

)]
=

V (t)

N(t)
+ Et

[
max
τ∈D(t)

(
E (τ)

N(τ)
− V (τ)

N(τ)
− A(τ)

)]
≤ V (t)

N(t)
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Upper Bound Method Duality and Upper Bounds

Duality and Upper Bounds (cont’d)

I As a result the Bermudan option value can be obtained by finding the
martingale component of the deflated option price.

I Of course this is in general as difficult as the original problem.
Nonetheless any approximation of such martingale component will
provide an upper bound of the option price through

V (t)

N(t)
≤ inf

M(t)=0
Et

[
max
τ∈D(t)

(
E (τ)

N(τ)
−M(τ)

)]
I Conceivably the better the approximation the tighter the upper

bound.
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Upper Bound Method Primal-Dual Algorithm

Martingales from Approximate Option Values

I Given an approximation of the deflated option price V (Xs)/N(Xs)
one can extract the corresponding martingale component to construct
an approximation of M?(s)

I One natural choice is

M̂?(t) =
B∑

j=η(t)+1

∆(Tj )

with M(t) = 0, and

∆(Tj ) =
V (X (Tj ))

N(X (Tj ))
− E

[V (X (Tj ))

N(X (Tj ))

∣∣∣X (Tj−1)
]

for j > η(t) + 1 and

∆(Tη(t)+1) =
V (X (Tη(t)+1)))

N(X (Tη(t)+1)))
− E

[V (X (Tη(t)+1)))

N(X (Tη(t)+1)))

∣∣∣X (t)
]
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Upper Bound Method Primal-Dual Algorithm

Martingales from Approximate Option Values (cont’d)

I By applying the ‘Tower law’ of conditional expectations it is
immediate to see that M̂? is indeed a martingale.

I The same is true if we replace V with the estimators V̂ defined e.g.,
by a regression based approach.

I However, replacing the true deflated hold value E
[

V (X (Tj ))
N(X (Tj ))

∣∣∣X (Tj−1)
]

with an approximate one Ĥ/N would not guarantee the martingale
property for ∆(Tj ).

I As a result, the deflated hold value needs to be valued by means of a
single time-step nested simulation of N ′ paths spun out of X (Tj−1)
namely

E
[V (X (Tj ))

N(X (Tj ))

∣∣∣X (Tj−1)
]
' 1

N ′

N′∑
m=1

V̂ (X (m)(Tj ))

N(X (m)(Tj ))
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Martingales from Approximate Stopping Times

I Alternatively one can employ approximations of the optimal stopping
time.

I Denote with τj the stopping time as seen at time Tj , i.e. τj ∈ D(Tj ),
and suppose that these stopping times are defined by approximate
hold value functions Ĥ, namely,

τj = min
(
k = j , . . . ,B : E (X (Tk )) ≥ Ĥ(X (Tk ))

)
where Ĥ could be estimated for instance by means of regression.

I One can construct ∆(Tj ) as

∆(Tj ) = E
[E (X (τj ))

N(X (τj ))

∣∣∣X (Tj )
]
− E

[E (X (τj ))

N(X (τj ))

∣∣∣X (Tj−1)
]
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Martingales from Approximate Stopping Times (cont’d)

I Also note that

E
[E (X (τj ))

N(X (τj ))

∣∣∣X (Tj )
]

=

{
E (X (Tj ))/N(X (Tj )) if E (X (Tj )) ≥ Ĥ(X (Tj )) ,

E
[
E (X (τj+1))/N(X (τj+1))

∣∣∣X (Tj )
]

otherwise.

I As a result the only quantities that need to be valued are those of the
form

E
[E (X (τj+1))

N(X (τj+1))

∣∣∣X (Tj )
]

which can be computed by sub-simulation.
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Upper Bond Algorithm

Step 1 Generate n independent paths of the underlying Markov
process X (k) = (X (k)(Tη(t)+1), . . . ,X (k)(TB)), for k = 1, . . . , n.

Step 2 For each path k, at each X (k)(Tj ), j = η(t) + 1, . . . ,B
a) Evaluate:

E
(k)
j = E (X (k)(Tj ))

Ĥ
(k)
j = Ĥ(X (k)(Tj ))

N
(k)
j = N(X (k)(Tj ))

b) Simulate N ′ subpaths starting from X (k)(Tj ) and compute

Ē
(k)
j =

1

N ′

N′∑
m=1

E (X (k,m)(τj+1)) .

c) Compute ∆̂
(k)
j using the information above.
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Upper Bond Algorithm

Step 3 For each path k , compute: M(k)(Ti ) for i = η(t) + 1, . . . ,B.

Step 4 For each path k , evaluate: E (k)(Ti )−M(k)(Ti ) for
i = η(t) + 1, . . . ,B.

Step 5 For each path k , evaluate:

U(k) = min
i=η(t)+1,...,B

(
E (k)(Ti )

N(X (Ti ))
−M(k)(Ti )

)
.

Step 6 Return:

V̄ (t) = N(t)× 1

N

N∑
k=1

U(k) .
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Exercise 3

Consider the Bermudan option of Exercise 1. Apply the upper bound method described in this

Section. Use the different estimators of the exercise time considered in Exercise 2 in order to

construct approximate martingales components of the deflated option price.
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