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Pathwise Derivative Method

Option Pricing Problems

I Option pricing problems can be typically formulated in terms of the
calculation of expectation values of the form

V = EQ

[
P(X (T1), . . . ,X (TM))

]
.

I Here X (t) is a N-dimensional vector and represents the value of a set
of underlying market factors (e.g., stock prices, interest rates, foreign
exchange pairs, etc.) at time t.

I P(X (T1), . . . ,X (TM)) is the discounted payout function of the priced
security, and depends in general on M observations of those factors.

I In the following, we will indicate the collection of such observations
with a d = N ×M dimensional state vector

X = (X (T1), . . . ,X (TM))t .
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Pathwise Derivative Method

Monte Carlo Sampling of the Payoff Estimator

I The expectation value above can be estimated by means of Monte
Carlo (MC) by sampling a number NMC of random replicas of the
underlying state vector X [1], . . . ,X [NMC], sampled according to the
distribution Q(X ), and evaluating the payout P(X ) for each of them.

I This leads to the estimate of the option value V as

V ' 1

NMC

NMC∑
iMC=1

P (X [iMC]) ,

with standard error Σ/
√
NMC, where

Σ2 = EQ[P (X )2]− EQ[P (X )]2

is the variance of the sampled payout.
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Pathwise Derivative Method

Pathwise Derivative Method

I The Pathwise Derivative Method allows the calculation of the
sensitivities of the option price V with respect to a set of Nθ
parameters θ = (θ1, . . . , θNθ

), with a single simulation.
I This can be achieved by noticing that, whenever the payout function

is regular enough, e.g., Lipschitz-continuous, and under additional
conditions that are often satisfied in financial pricing (see, e.g., [1]),
one can write the sensitivity 〈θ̄k〉 ≡ dV /dθk as

〈θ̄k〉 = EQ

[dPθ (X )

dθk

]
.

I In the context of MC simulations, this equation can be easily
understood by thinking the random sampling of the state vector X as
performed in terms of a mapping of the form, X = X (θ;Z ), where Z
is a random vector independent of θ. In fact, after this mapping, the
expectation value EQ[. . .] can be expressed as an average over the
probability distribution of Z , Q(Z ), which is independent of θ.
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Pathwise Derivative Method

Pathwise Derivative Method: Interpretation

I The calculation of 〈θ̄k〉 can be performed by applying the chain rule,
and averaging on each MC sample the so-called Pathwise Derivative
Estimator

θ̄k ≡
dPθ(X )

dθk
=

d∑
j=1

∂Pθ(X )

∂Xj
×
∂Xj

∂θk
+
∂Pθ(X )

∂θk
.

I The matrix of derivatives of each state variable, or Tangent state
vector, is by definition given by

∂Xj

∂θk
= lim

∆θ→0

Xj (θ1, . . . , θk + ∆θ, . . . , θNθ
)− Xj (θ)

∆θ
.

I This gives the intuitive interpretation of ∂Xj/∂θk in terms of the
difference between the sample of the j-th component of the state
vector obtained after an infinitesimal ‘bump’ of the k-th parameter,
Xj (θ1, . . . , θk + ∆θ, . . . , θNθ

), and the base sample Xj (θ), both
calculated on the same random realization.
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Pathwise Derivative Method

Pathwise Derivative Method: Diffusions

I Consider the case for instance in which the state vector X is a path of
a N-dimensional diffusive process,

dX (t) = µ(X (t), t, θ) dt + σ(X (t), t, θ) dWt ,

with X (t0) = X0. Here the drift µ(X , t, θ) and volatility σ(X , t, θ) are
an N-dimensional vector and N × N matrix, respectively, and Wt is a
N-dimensional Brownian motion with instantaneous correlation
matrix ρ(t) defined by ρ(t) dt = EQ

[
dWtdW

T
t

]
.

I The Pathwise Derivative Estimator may be rewritten as

θ̄k =
M∑

l=1

N∑
j=1

∂ P(X (T1), . . . ,X (TM))

∂Xj (Tl )

∂Xj (Tl )

∂θk
+
∂Pθ(X )

∂θk

where we have relabeled the d components of the state vector X
grouping together different observations Xj (T1), . . . ,Xj (TM) of the
same (j-th) asset.
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Pathwise Derivative Method

Pathwise Derivative Method: Diffusions

I In particular, the components of the Tangent vector for the k-th
sensitivity corresponding to observations at times (T1, . . . ,TM) along
the path of the j-th asset, say,

∆jk (Tl ) =
∂Xj (Tl )

∂θk

with l = 1, . . . ,M, can be obtained by solving a stochastic differential
equation

d∆jk (t) =
N∑

i=1

[
∂µj (X (t), t; θ)

∂Xi (t)
dt +

∂σj (X (t), t; θ)

∂Xi (t)
dWt

]
∆ik(t)

+

[
∂µj (X (t), t; θ)

∂θk
dt +

∂σj (X (t), t; θ)

∂θk
dWt

]
,

with the initial condition ∆jk (0) = ∂Xj (0)/∂θk .
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Pathwise Derivative Method

Pathwise Derivative Method: Is it worth the trouble?

I The Pathwise Derivative Estimators of the sensitivities are
mathematically equivalent to the estimates obtained by standard finite
differences approaches when using the same random numbers in both
simulations and for a vanishing small perturbation. In this limit, the
Pathwise Derivative Method and finite differences estimators provide
exactly the same estimators for the sensitivities, i.e., estimators with
the same expectation value, and the same MC variance.

I As a result, the implementation effort associated with the Pathwise
Derivative Method is generally justified if the computational cost of
the Pathwise Estimator is significantly less than the corresponding
finite differences one.

I This is the case for instance in very simple models but difficult to
achieve for those used in the financial practice.
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Algebraic Adjoint Approaches
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Algebraic Adjoint Approaches

‘Algebraic’ Adjoint Methods

I In 2006 Mike Giles and Paul Glasserman published a ground breaking
‘Smoking Adjoints’ in Risk Magazine [2].

I They proposed a very efficient implementation of the Pathwise
Derivative Method in in the context of the Libor Market Model for
European payouts (generalized to Bermudan options by Leclerc et al.
[3] and extended by Joshi et al. [4]).

I In a nutshell:

1. Concentrate on the Tangent process and formulate it propagation in
terms of Linear Algebra operations.

2. Optimize the computation time by rearranging the order of the
computations.

3. Implement the rearranged sequence of operations.

I In the following we denote these Adjoint approaches as algebraic.
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Algebraic Adjoint Approaches

Libor Market Model

I Let’s indicate with Ti , i = 1, . . . ,N + 1, a set of N + 1 bond
maturities, with spacings δ = Ti+1 − Ti (constant for simplicity).

I In a Lognormal setup the dynamics of the forward Libor rates as seen
at time t for the interval [Ti ,Ti+1), Li (t), takes the form

dLi (t)

Li (t)
= µi (L(t))dt + σi (t)TdWt ,

0 ≤ t ≤ Ti , and i = 1, . . . ,N, where Wt is a dW -dimensional
standard Brownian motion, L(t) is the N-dimensional vector of Libor
rates, and σi (t) the dW -dimensional vector of volatilities, at time t.
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Algebraic Adjoint Approaches

Libor Market Model

I The drift term in the spot measure, as imposed by the no arbitrage
conditions, reads

µi (L(t)) =
i∑

j=η(t)

σT
i σjδLj (t)

1 + δLj (t)
,

where η(t) denotes the index of the bond maturity immediately
following time t, with Tη(t)−1.

I It is common in the literature, to keep this example as simple as
possible, we take each vector σi to be a function of time to maturity

σi (t) = σi−η(t)+1(0) = λ(i − η(t) + 1).
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Algebraic Adjoint Approaches

Libor Market Model: Euler Discretization

I The dynamics of the forward Libor rates can be simulated by applying
a Euler discretization to the logarithms of the forward rates.

I By dividing each interval [Ti ,Ti+1) into Ns steps of equal width,
h = δ/Ns . This gives

Li (tn+1)

Li (tn)
= exp

[(
µi (L(tn))− ||σi (tn)||2/2

)
h + σT

i (n)Z (tn)
√
h
]
,

for i = η(nh), . . . ,N, and Li (tn+1) = Li (tn) if i < η(nh). Here Z is a
dW -dimensional vector of independent standard normal variables and
t0 is today.

I The Euler step is best implemented by first computing

Si (tn) =
i∑

j=η(nh)

σjδLj (tn)

1 + δLj (tn)
, i = η(nh), . . . ,N

so that µi (n) = σT
i Si giving a cost of O(N) per time step.
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Algebraic Adjoint Approaches

Swaption Payout

I The standard test case are contracts with expiry Tm to enter in a
swap with payments dates Tm+1, . . . ,TN+1, at a fixed rate K

V (Tm) =
N+1∑

i=m+1

B(Tm,Ti )δ(Sn(Tm)− K )+,

where B(Tm,Ti ) is the price at time Tn of a bond maturing at time
Ti

B(Tm,Ti ) =
i−1∏
l=m

1

1 + δLl (Tm)
,

and the swap rate reads

Sm(Tm) =
1− B(Tm,TN+1)

δ
∑N+1

l=m+1 B(Tm,Tl )
.

I Here we consider European style payouts. It is simple to generalize to
Bermudan options (see [3]).
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Algebraic Adjoint Approaches

Pathwise Derivative Estimator for Delta

I The Pathwise Estimator for the Delta,

L̄k (t0) =
∂V (Tm)

∂Lk (t0)
,

reads:

L̄k (t0) =
N∑

j=1

∂V (Tm)

∂Lj (Tm)

∂Lj (Tm)

∂Lk (t0)
=
∂V (Tm)

∂L(Tm)

T

∆(Tm),

where the Tangent process is

∆jk(t) =
∂Lj (t)

∂Lk (t0)
.
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Algebraic Adjoint Approaches

Euler Evolution of the Tangent Process

I By differentiating the Euler discretization for the Libor dynamics one
obtains the Euler discretization of the Tangent process dynamics:

∆ik(tn+1) = ∆ik (tn)
Li (tn+1)

Li (tn)
+ Li (tn+1)

N∑
j=1

∂µi (tn)

∂Lj (tn)
∆jk (tn),

where ∆ik(t0) = ∂Li (t0)/∂Lk (t0) = δjk .

I The evolution of the Tangent process can be expressed as the matrix
recursion:

∆(tn+1) = B(tn)∆(tn+1)

where B(tn) is an N × N matrix.
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Algebraic Adjoint Approaches

Standard (Forward) Implementation of the Pathwise
Derivative Estimator

I A standard implementation for the calculation of the Pathwise
Estimator

L̄k (T0) =
∂V (Tm)

∂L(Tm)

T

∆(Tm),

where Tm = tM , with M = Ns ×m, involves:
1. Apply the matrix recursion

∆(tn+1) = B(tn)∆(tn),

M times starting from ∆ik (t0) = δjk in order to compute ∆(Tm). The
total cost in the general case is O(MN3).

2. Compute analytically the derivatives of the payoff

∂V (Tm)

∂L(Tm)
,

and multiply it by ∆(Tm), at a cost O(N2).

Luca Capriotti Efficient Risk Management in Monte Carlo 3 20 / 99



Algebraic Adjoint Approaches

Standard (Forward) Implementation of the Pathwise
Derivative Estimator

I This involves proceeding from right to left (i.e., forward in time):

L̄k (T0) =
∂V (Tm)

∂L(Tm)

T

B(tM−1) . . .B(t0)∆(t0)

at a total computational cost O(MN3) in the general case.

I However, a simple observation allows a much more efficient
implementation...
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Algebraic Adjoint Approaches

Adjoint (Backward) Implementation

I After completing the evolution of the Libor path up to Tm the right
hand side of

L̄k (T0) =
∂V (Tm)

∂L(Tm)

T

B(tM−1) . . .B(t0)∆(t0)

can be computed from left to right (i.e., backward in time) by taking
the transpose (i.e., the ‘Adjoint’)

L̄k (T0) = ∆(t0)B(t0)T . . .B(tM−1)T ∂V (Tm)

∂L(Tm)
,

or equivalently as

L̄k (T0) = ∆(t0)A(t0)T

where the A(t0) is the N dimensional vector given by the
matrix-vector recursion

Āk (tn) = B(tn)TAk (tn+1) Ak (tM) =
∂V (Tm)

∂L(Tm)
.

Luca Capriotti Efficient Risk Management in Monte Carlo 3 22 / 99



Algebraic Adjoint Approaches

Forward vs Adjoint: Computational Complexity

Compare:

I The forward computation of the Pathwise Estimator

L̄k (T0) =
∂V (Tm)

∂L(Tm)

T

B(tM−1) . . .B(t0)∆(t0)

which consists of M matrix-matrix products and a final matrix-vector
product for an overall cost of O(MN3) in the general case.

I The Adjoint computation of the Pathwise Estimator

L̄k (T0) = ∆(t0)B(t0)T . . .B(tM−1)T ∂V (Tm)

∂L(Tm)
,

which consists of M + 1 matrix-vector products with an overall
computational cost of O(MN2).

I The Adjoint implementation is O(N) cheaper than the forward one.
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Algebraic Adjoint Approaches

Forward vs Adjoint: Computational Complexity

I In the specific example the forward propagation by using the same
optimization employed in the propagation of the forward Libor rates
can be implemented in O(N2) per time step (rather than O(N3)).

I However, using the same propagation, the result still holds that the
Adjoint propagation is O(N) cheaper, for an overall cost O(N) per
time step.

I As a result, computing the Pathwise Derivative Estimators for Delta
has the same computational complexity of propagating the forward
Libor rates and evaluating the payout. This means that we can get all
the Delta sensitivities at a cost that is of the same order of magnitude
than computing the payout (rather than O(N) larger if we were
computing the Deltas by bumping).

I The same results holds also for Vega.
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Algebraic Adjoint Approaches

Algebric Adjoint Methods

From Ref. [2]

Arbitrary number of sensitivities at a fixed small cost.
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Algebraic Adjoint Approaches

Limitations of Algebraic Adjoint Methods

The Libor Market Model is bit of an ad-hoc application:

I Difficult to generalize to Path Dependent Options or multi asset
simulations.

I The required algebraic analysis is in general cumbersome.

I Not general enough for all the applications in Finance.

I The derivatives required are often not available in closed form.

I What about the derivatives of the payout?
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Algebraic Adjoint Approaches

Algorithmic Adjoint Approaches: AAD

I Adjoint implementations can be seen as instances of a programming
technique known as Adjoint Algorithmic Differentiation (AAD) [5].

I In general AAD allows the calculation of the gradient of an algorithm
at a cost that is a small constant (∼ 4) times the cost of evaluating
the function itself, independent of the number of input variables.

I Given that for each random realization the Payoff estimator can be
seen as a map

θk → P(X (θk )),

AAD allows the calculation of the Pathwise Derivative Estimators for
any number of sensitivities

θ̄k =
∂P(X (θk ))

∂θk
,

at a small fixed cost, similarly to the Algebric Adjoint applications of
the Libor Market Model, but now in complete generality.
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Adjoint Algorithmic Differentiation (AAD)

Section 4

Adjoint Algorithmic Differentiation (AAD)

Luca Capriotti Efficient Risk Management in Monte Carlo 3 28 / 99



Adjoint Algorithmic Differentiation (AAD)

Algorithmic Differentiation

I Algorithmic Differentiation (AD) is a set of programming techniques
first introduced in the early 60’s aimed at computing accurately and
efficiently the derivatives of a function given in the form of a
computer program.

I The main idea underlying AD is that any such program can be
interpreted as the composition of functions each of which is in turn a
composition of basic arithmetic (addition, multiplication etc.), and
intrinsic operations (logarithm, exponential, etc.).

I Hence, it is possible to calculate the derivatives of the outputs of the
program with respect to its inputs by applying mechanically the rules
of differentiation.

I This makes it possible to generate automatically a computer program
that evaluates efficiently and with machine precision accuracy the
derivatives of the function [5].
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Adjoint Algorithmic Differentiation (AAD)

Algorithmic Differentiation

I What makes AD particularly attractive when compared to standard
(e.g., finite difference) methods for the calculation of the derivatives,
is its computational efficiency.

I In fact, AD aims at exploiting the information on the structure of the
computer function, and on the dependencies between its various
parts, in order to optimize the calculation of the sensitivities.

I AD comes in two main flavors, Tangent and Adjoint mode, which are
characterized by different properties in different (complementary)
computational complexity.
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Adjoint Algorithmic Differentiation (AAD)

Algorithmic Differentiation: Tangent mode

I Consider a function
Y = FUNCTION(X )

mapping a vector X in Rn in a vector Y in Rm.
I The execution time of its Tangent counterpart

X̄ = FUNCTION d(X , Ẋ )

(with suffix d for “dot”) calculating the linear combination of the
columns of the Jacobian of the function:

Ẏj =
m∑

i=1

Ẋi
∂Yj

∂Xi
,

with j = 1, . . . ,m, is bounded by

Cost[FUNCTION d]

Cost[FUNCTION]
≤ ωT

with ωT ∈ [2, 5/2].
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Adjoint Algorithmic Differentiation (AAD)

Algorithmic Differentiation: Adjoint mode

I The execution time of the Adjoint counterpart of

Y = FUNCTION(X ),

namely,
X̄ = FUNCTION b(X , Ȳ )

(with suffix b for “backward” or “bar”) calculating the linear
combination of the rows of the Jacobian of the function:

X̄i =
m∑

j=1

Ȳj
∂Yj

∂Xi
,

with i = 1, . . . , n, is bounded by

Cost[FUNCTION b]

Cost[FUNCTION]
≤ ωA

with ωA ∈ [3, 4].
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Adjoint Algorithmic Differentiation (AAD)

Algorithmic Differentiation: Tangent vs Adjoint mode

Given the results above:

I The Tangent mode is particularly well suited for the calculation of
(linear combinations of) the columns of the Jacobian matrix.

I Instead, the Adjoint mode is particularly well-suited for the calculation
of (linear combinations of) the rows of the Jacobian matrix .

I In particular, the Adjoint mode provides the full gradient of a scalar
(m = 1) function at a cost which is just a small constant times the
cost of evaluating the function itself. Remarkably such relative cost is
independent of the number of components of the gradient.

I When the full Jacobian is required, the Adjoint mode is likely to be
more efficient than the Tangent mode when the number of
independent variables is significantly larger than the number of the
dependent ones (m� n). Or viceversa.
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Adjoint Algorithmic Differentiation (AAD)

Tangent mode: Propagating Forwards

I Imagine that the function Y = FUNCTION(X ) is implemented by
means of a sequence of steps

X → . . . → U → V → . . . → Y ,

where the real vectors U and V represent intermediate variables used
in the calculation and each step can be a distinct high-level function
or even an individual instruction.

I Define the Tangent of any intermediate variable Uk as

U̇k =
n∑

i=1

Ẋi
∂Uk

∂Xi
.

Luca Capriotti Efficient Risk Management in Monte Carlo 3 34 / 99



Adjoint Algorithmic Differentiation (AAD)

Tangent mode: Propagating Forwards

I Using the chain rule we get,

V̇j =
n∑

i=1

Ẋi
∂Vj

∂Xi
=

n∑
i=1

Ẋi

∑
k

∂Vj

∂Uk

∂Uk

∂Xi
=
∑

k

∂Vj

∂Uk
U̇k ,

which corresponds to the Tangent mode equation for the intermediate
step represented by the function V = V (U)

V̇j =
∑

k

U̇k
∂Vj

∂Uk
,

namely a function of the form V̇ = V̇ (U, U̇).
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Adjoint Algorithmic Differentiation (AAD)

Tangent mode: Propagating Forwards

I Hence the computation of the Tangents can be executed in the same
direction of the original function

Ẋ → . . . → U̇ → V̇ → . . . → Ẏ .

This can be executed simultaneously with the original function, since
at each intermediate step U → V one can compute the derivatives
∂Vj (U)/∂Uk and execute the Tangent forward propagation

U̇ → V̇ V̇j =
∑

k

U̇k
∂Vj

∂Uk
.

I The Tangent of the output obtained with this forward recursion is by
definition:

Ẏk =
n∑

i=1

Ẋi
∂Yk

∂Xi
,

i.e., in a single forward sweep one can produce a linear combination of
the columns of the Jacobian ∂Y /∂X .
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Adjoint Algorithmic Differentiation (AAD)

Tangent mode: Propagating Forwards

I The Tangent mode produces the linear combination of columns of the
Jacobian

Ẏk =
n∑

i=1

Ẋi
∂Yk

∂Xi
,

where Ẋ is an arbitrary vector in Rn.

I By initializing in turn Ẋ with each vector of the canonical basis in Rn,
(e1, . . . , en) with

ej = (0, . . . , 1︸ ︷︷ ︸
j

, 0, . . . , 0)

one can obtain the partial derivatives of all the outputs with respect
to each of the inputs Ẏk = ∂Yk/∂Xi , thus resulting in a cost that is n
times the cost of a single forward Tangent sweep.
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Adjoint Algorithmic Differentiation (AAD)

Tangent mode: Propagating Forwards

I It is not difficult to realize that the cost of computing each single step
U̇ → V̇ is just a small multiple of the cost of executing U → V .

I Consider for instance the example:

V1 = cos(U1)U1 + U2 exp(U2)

the corresponding Tangents read

V̇1 = U̇1(− sin(U1)U1 + cos(U1)) + U̇2(U2 + 1) exp(U2),

I Computing V̇ (3 intrinsic operations, 4 multiplication and 3
additions) has the same computational complexity of computing the
original function (2 intrinsic operations, 2 multiplications and 1
additions). Assuming that all the operations have the same cost it
would be twice as expensive.
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Adjoint Algorithmic Differentiation (AAD)

Tangent mode: Propagating Forwards

I Extending to the whole computation one can see how keeping into
account of the relative cost of different types of operation one can
arrive to the result [5]:

Cost[FUNCTION d]

Cost[FUNCTION]
≤ ωT

with ωT ∈ [2, 5/2].

I By performing simultaneously the calculation of all the components of
the gradient one can optimize the calculation by reusing a certain
amount of computations (for instance the arc derivatives). This leads
to a more efficient implementation also known as Tangent
Multimode. The constant ωT for these implementations is generally
smaller than in the standard Tangent mode.
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Adjoint Algorithmic Differentiation (AAD)

Adjoint mode: Propagating Backwards

I Let’s consider again the function Y = FUNCTION(X ) implemented by
means of a sequence of steps

X → . . . → U → V → . . . → Y .

I Define the Adjoint of any intermediate variable Vk as

V̄k =
m∑

j=1

Ȳj
∂Yj

∂Vk
,

where Ȳ is vector in Rm.
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Adjoint Algorithmic Differentiation (AAD)

Adjoint mode: Propagating Backwards

I Using the chain rule we get,

Ūi =
m∑

j=1

Ȳj
∂Yj

∂Ui
=

m∑
j=1

Ȳj

∑
k

∂Yj

∂Vk

∂Vk

∂Ui
,

which corresponds to the Adjoint mode equation for the intermediate
step represented by the function V = V (U)

Ūi =
∑

k

V̄k
∂Vk

∂Ui
,

namely a function of the form Ū = V̄ (U, V̄ ).
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Adjoint Algorithmic Differentiation (AAD)

Adjoint mode: Propagating Backwards

I Starting from the Adjoint of the outputs, Ȳ , we can apply this rule to
each step in the calculation, working from right to left,

X̄ ← . . . ← Ū ← V̄ ← . . . ← Ȳ

until we obtain X̄ , i.e., the following linear combination of the rows of
the Jacobian ∂Y /∂X

X̄i =
m∑

j=1

Ȳj
∂Yj

∂Xi
,

with i = 1, . . . , n.

I Contrary to the Tangent mode, the backward propagation can start
only after the calculation of the function an the intermediate variables
have been computed and stored.
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Adjoint Algorithmic Differentiation (AAD)

Adjoint mode: Propagating Backwards

I Consider as before the example:

V1 = cos(U1)U1 + U2 exp(U2)

the corresponding Adjoints read

Ū1 = V̄1(− sin(U1)U1 + cos(U1)),

Ū2 = V̄1(U2 + 1) exp(U2))

I Computing Ū (3 intrinsic operations, 4 multiplications and 2
additions) has the same computational complexity of computing the
original function (2 intrinsic operations, 2 multiplications and 1
addition). Assuming that all the operations have the same cost it
would be about twice as expensive.
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Adjoint Algorithmic Differentiation (AAD)

Adjoint mode: Propagating Backwards

I Extending to the whole computation one can see how keeping into
account of the relative cost of different types of operation one can
arrive to the result [5]:

Cost[FUNCTION b]

Cost[FUNCTION]
≤ ωA

with ωA ∈ [3, 4].
I This result is based on the number of arithmetic operations which

must be performed. It also includes the cost of memory operations,
but assumes a uniform cost for these, irrespective of the total amount
of memory used. This assumption is violated in practice due to the
cache hierarchy in modern computers.

I Nevertheless, it remains true in practice that one can obtain the
sensitivity of a single output, or a linear combination of outputs, to an
unlimited number of inputs for only a little more work than the
original calculation.
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Adjoint Algorithmic Differentiation (AAD)

First Examples: Derivatives of Payoff Functions

I As a first example let’s consider the Payoff of a Basket Option

P(X (T )) = e−rT

(
N∑

i=1

wiXi (T )− K

)+

,

where X (T ) = (X1(T ), . . . ,XN(T )) represent the value of a set of N
underlying assets, say a set of equity prices, at time T , wi ,
i = 1, . . . ,N, are the weights defining the composition of the basket,
K is the strike price, and r is the risk free yield for the considered
maturity.

I For this example, we are interested in the calculation of the
sensitivities with respect to r and the N components of the state
vector X so that the other parameters, i.e., strike and maturity, are
seen here as dummy constants.
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Adjoint Algorithmic Differentiation (AAD)

Pseudocode of the Basket Option

From Ref. [6]
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Adjoint Algorithmic Differentiation (AAD)

Pseudocode of the Tangent Payoff for the Basket Option

(P, P_d)= payout_d(r, X[N], r_d, X_d[N]){

  B = 0.0;

  for (i = 1 to N) {

   B += w[i]*X[i];

   B_d += w[i]*X_d[i];

  }

  x = B - K;

  x_d = B_d;

  D = exp(-r * T);

  D_d = -T * D * r_d;

  P = D * max(x, 0.0);

  P_d = 0;

  if(x > 0)

   P_d = D_d*x + D*x_d;

};

From Ref. [6]

I The computational cost of the Tangent payoff is of the same order of the original Payoff.

I To get all the components of the gradient of the payoff, the Tangent payoff code must be
run N + 1 times, setting in turn one component of the Tangent input vector I = (ṙ , Ẋ )t

to one and the remaining ones to zero.
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Adjoint Algorithmic Differentiation (AAD)

Pseudocode of the MultimodeTangent Payoff for the
Basket Option

From Ref. [6]

I To get all the components of the gradient of the payoff, the Tangent payoff code must be
run only once.

I The computational cost of the Multimode Tangent payoff still scales as N times the cost
of the original Payoff.
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Adjoint Algorithmic Differentiation (AAD)

Pseudocode of the Adjoint Payoff for the Basket Option

From Ref. [6]

I The Adjoint payoff contains a forward sweep.

I The computational cost of the Adjoint payoff is of the same order of the original Payoff.

I All the components of the gradient of the payoff, are obtained by running the Adjoint
payoff only once setting P̄ = 1.
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Adjoint Algorithmic Differentiation (AAD)

Tangent vs Adjoint

From Ref. [6]
I The Tangent payoff performs similarly to bumping (much better for the Multimode

version) and has a computational complexity that scales with the number of inputs.
I In the Adjoint mode the calculation of all the derivatives of the payoff requires an extra

overhead of just 70% with respect to the calculation of the payoff itself for any number of
inputs.
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Adjoint Algorithmic Differentiation (AAD)

Tangent vs Adjoint

I In general we are interested in computing the sensitivities of a
derivative or of a portfolio of derivatives with respect to a large
number of risk factors.

I The Adjoint model of Algorithmic Differentiation is therefore the one
best suited for the task.

I In some applications, however, one is also interested in computing the
sensitivities of a multiplicity of derivatives individually. In those cases
one can effectively combine the Adjoint and Tangent mode. See e.g.
[6].

I In the following we will concentrate on the Adjoint mode of
Algorithmic Differentiation (AAD) as it is the one of wider
applicability.
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AAD as a Design Paradigm

Section 5

AAD as a Design Paradigm
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AAD as a Design Paradigm

AAD as a Design Paradigm

I The propagation of the Adjoints according to the steps, being
mechanical in nature, can be automated.

I Several AD tools are available that given a procedure of the form:

Y = FUNCTION(X ),

generate the Adjoint function:

X̄ = FUNCTION b(X , Ȳ ).

I An excellent source of information can be found at www.autodiff.org.

I Unfortunately, the application of such automatic AD tools on large
inhomogeneous computer codes, like the one used in financial
practices, is challenging.

I Fortunately, the principles of AD can be used as a programming
paradigm for any algorithm.
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AAD as a Design Paradigm

AAD as a Design Paradigm

I Fortunately, the principles of AD can be used as a programming
paradigm for any algorithm.

I An easy way to illustrate the Adjoint design paradigm is to consider
again the arbitrary computer function

Y = FUNCTION(X ),

and to imagine that this represents a certain high level algorithm that
we want to differentiate.

I By appropriately defining the intermediate variables, any such
algorithm can be abstracted in general as a composition of functions
like

X → . . . → U → V → . . . → Y .
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AAD as a Design Paradigm

AAD as a Design Paradigm

I However, the actual calculation graph might have a more complex
structure. For instance the step U → V might be implemented in
terms of two computer functions of the form

V 1 := V1(U1) ,

V 2 := V2(U1,U2) ,

with U = (U1,U2)t and V = (V 1,V 2)t . Here the notation
W = (W 1,W 2)t simply indicates a specific partition of the
components of the vector W in two sub-vectors.

I A natural way to represent the step Ū ← V̄ in

X̄ ← . . . ← Ū ← V̄ ← . . . ← Ȳ

i.e., the function Ū = V̄ (U, V̄ ), can be given in terms of an Adjoint
calculation graph.
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AAD as a Design Paradigm

AAD as a Design Paradigm

I The Adjoint graph has the same structure of the original graph with
each node/variable representing the Adjoint of the original
node/variable, and it is executed in opposite direction with respect to
the original one.
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AAD as a Design Paradigm

AAD as a Design Paradigm

I The relation between the Adjoint nodes is defined by the
correspondence between Y = FUNCTION(X ) and
X̄ = FUNCTION b(X , Ȳ )., e.g., in the specific example

(Ū1, Ū2)t := V2 b(U1,U2, V̄ 2) ,

Ū1 := Ū1 + V1 b(U1, V̄ 1) .

I This can be understood as it follow: the variable U1 is an input of
two distinct functions so that, by applying the definition of Adjoint
for the variable U1 as an input of the function
V = V (U1,U2) = (V 1(U1),V 2(U1,U2))t , we get

Ū1 =
∑

j

V̄j
∂Vj

∂U1
=
∑

k

V̄ 1
k

∂V 1
k

∂U1
+
∑

k

V̄ 2
k

∂V 2
k

∂U1

where we have simply partitioned the components of the vector V as
(V 1,V 2)t for the second equality.
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AAD as a Design Paradigm

AAD as a Design Paradigm

I Similarly, one has for Ū2

Ū2 =
∑

j

V̄j
∂Vj

∂U2
=
∑

k

V̄ 2
k

∂V 2
k

∂U2
,

where we have used the fact that V 1 has no dependence on U2.

I Therefore, one can realize that the Adjoint calculation graph
implementing the instructions in

(Ū1, Ū2)t := V2 b(U1,U2, V̄ 2) ,

Ū1 := Ū1 + V1 b(U1, V̄ 1) .

indeed produces the Adjoint Ū = (Ū1, Ū2)t .
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AAD as a Design Paradigm

AAD as a Design Paradigm

I Similarly, one has for Ū2

Ū2 =
∑

j

V̄j
∂Vj

∂U2
=
∑

k

V̄ 2
k

∂V 2
k

∂U2
,

where we have used the fact that V 1 has no dependence on U2.

I Therefore, one can realize that the Adjoint calculation graph
implementing the instructions in

(Ū1, Ū2)t := V2 b(U1,U2, V̄ 2) ,

Ū1 := Ū1 + V1 b(U1, V̄ 1) .

indeed produces the Adjoint Ū = (Ū1, Ū2)t .
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AAD as a Design Paradigm

Forward and Backward Sweeps

I The Adjoint instructions

(Ū1, Ū2)t := V2 b(U1,U2, V̄ 2) ,

Ū1 := Ū1 + V1 b(U1, V̄ 1) .

depend on the variables U1 and U2.
I As a result, the Adjoint algorithm can be executed only after the

original instructions

X → . . . → U → V → . . . → Y .

have been executed and the necessary intermediate results have been
computed and stored.

I This is the reason why, as note before, the Adjoint of a given
algorithm generally contains a forward sweep, which reproduces the
steps of the original algorithm, plus a backward sweep, which
propagates the Adjoints.
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AAD as a Design Paradigm

Checkpointing

I The construction described above can be applied recursively for each
of the functions involved in the calculation. In particular, each
Adjoint function, taken in isolation, contains in turn a forward sweep
recovering the information that is necessary for the propagation of the
Adjoints.

I However, this is clearly suboptimal since all the information necessary
to perform the Adjoint of the algorithm is computed when performing
the forward sweep of the algorithm as a whole. Hence, this
information could be saved during this stage. This way, when the
Adjoint functions are invoked during the backward sweep there is no
need to perform the functions’ forward sweeps again.

I Strictly speaking, for variables that do not occur linearly in the code,
storing information is necessary to ensure that the computational cost
of the overall algorithm remains within the expected bounds.

Luca Capriotti Efficient Risk Management in Monte Carlo 3 61 / 99



AAD as a Design Paradigm

Checkpointing

I However, there is a tradeoff between the time and space necessary to
store and retrieve this information and the time to recalculate it from
scratch. Thus, in practice it is useful to store in the forward sweep
only the results of relatively expensive calculations.

I Consider for instance a sequence of 4 steps: A→ B → C → D → E .

I In the initial calculation, the input to each step is stored, but none of
the intermediate values within the step except for the last. The
Adjoint of the final step is performed, then before performing the
Adjoint of the second last step it is necessary to re-evaluate that step,
storing all of its intermediate values. This process is then repeated for
the earlier steps, working backwards in order.

I The total cost is increased because all steps except for the last are
computed twice, but this significantly reduces the memory
requirements, and in practice will often reduce the cost as well
because of the time taken to fetch data from memory.
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AAD as a Design Paradigm

Checkpointing
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Illustration of checkpointing in which the “state” of the forward calculation is saved at critical
points, so that the intermediate values required for the Adjoint calculation can be re-computed

later.
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AAD as a Design Paradigm

Adjoint Programming in a Nutshell

I A detailed tutorial on the programming techniques that are useful for
Adjoint implementations is beyond the scope of this course.

I However, when hand-coding the Adjoint counterpart of a set of
instructions it is often enough to keep in mind just a few practical
recipes.
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AAD as a Design Paradigm

Adjoint Programming in a Nutshell

a) Each intermediate differentiable variable U can be used not only by
the subsequent instruction but also by several others occurring later in
the program. As a result, the Adjoint of U has several contributions,
one for each instruction of the original function in which U was on
the right hand side of the assignment operator. Hence, by exploiting
the linearity of differential operators, it is generally easier to program
according to a syntactic paradigm in which Adjoints are always
updated so that the Adjoint of an instruction of the form

V = V (U)

reads

Ūi = Ūi +
∑

k

∂Vk (U)

∂Ui
V̄k .
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AAD as a Design Paradigm

Adjoint Programming in a Nutshell

b) This implies that the Adjoints have to be appropriately initialized. In
particular, to cope with input variables that are changed by the
algorithm (see next point), it is generally best to initialize the Adjoint
of a given variable to zero on the instruction in which it picks up its
first contribution (i.e., immediately before the Adjoint counterpart of
the last instruction of the original code in which the variable was to
the right of the assignment operator).

For instance, consider the sequence of instructions where x is the
input, u and v are local variables, and y is the output

u = F (x)

v = G (x , u)

y = H(v)
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AAD as a Design Paradigm

Adjoint Programming in a Nutshell

The corresponfind Adjoint can be written as:

v̄ = 0, v̄ = v̄ +
∂H(v)

∂v
ȳ

ū = 0, ū = ū +
∂G (x , u)

∂u
v̄

x̄ = 0, x̄ = x̄ +
∂G (x , u)

∂x
v̄ ,

x̄ = x̄ +
∂F (x)

∂x
ū

where ȳ is the input, ū and v̄ are local variables, and x̄ is the output.

Note that the life-cycle of an Adjoint variable terminates after the
Adjoint of the instruction that initializes the corresponding forward
variable. For instance, in the example above ȳ can be reset to zero
after the second Adjoint instruction, v̄ after the sixth, and ū after the
seventh. Doing so explicitly is often a helpful programming idiom.
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AAD as a Design Paradigm

Adjoint Programming in a Nutshell

c) In some situations the input U of a function V = V (U) is modified
by the function. As above, this situation is easily analyzed by
introducing an auxiliary variable U ′ representing the value of the input
after the functions evaluation. Therefore, the original function can be
thought of the form

(V ,U ′) = (V (U),U ′(U)),

where V (U) and U ′(U) do not mutate their inputs, in combination
with the assignment U = U ′, overwriting the original input U.
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AAD as a Design Paradigm

Adjoint Programming in a Nutshell

The Adjoint of this pair of instructions clearly reads

Ū ′i = 0, Ū ′i = Ū ′i + Ūi ,

where we have used the fact that the auxiliary variable U ′ is not used
elsewhere (so Ū ′i does not have any previous contribution), and

Ūi = 0, Ūi = Ūi +
∑

k

∂Vk (U)

∂Ui
V̄k +

∑
l

∂U ′l (U)

∂Ui
Ū ′l ,

where, again, we have also used the fact that the original input U is
not used after the instruction V = V (U) as it gets overwritten. One
can therefore eliminate altogether the Adjoint of the auxiliary variable
Ū ′ and simply write

Ūi =
∑

k

∂Vk (U)

∂Ui
V̄k +

∑
l

∂U ′l (U)

∂Ui
Ūl .
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AAD as a Design Paradigm

Adjoint Programming in a Nutshell

Very common examples of this situation are given by increments of
the form

Ui = a Ui + b

with a and b constant with respect to U. According to the above
recipe, the Adjoint counterpart of this instruction simply reads

Ūi = a Ūi .

These situations are common in iterative loops where a number of
variables are typically updated at each iteration.
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AAD as a Design Paradigm

Adjoint Programming in a Nutshell

d) Each function, subroutine or method can be abstracted as a function
with some inputs and some outputs even if some of these variables
are implicit. For instance, in an object oriented language, a class
constructor can be seen as a function whose (implicit) outputs are the
member variables of the class. These member variables, say θ, can be
also seen as implicit inputs of all the other methods of the class, e.g.,

Y = METHOD(X , θ).

Hence, the corresponding Adjoint methods – in addition to the
sensitivities to its explicit inputs – generally produce the sensitivities
with respect to the member variables, θ̄, e.g.,

(X̄ , θ̄) += METHOD b(X , θ, Ȳ ),

where we have used the standard addition assignment operator +=.
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AAD enabled Monte Carlo Engines

Section 6

AAD enabled Monte Carlo Engines
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AAD enabled Monte Carlo Engines

AAD enabled Monte Carlo Engines

I AAD provides a general design and programming paradigm for the
efficient implementation of the Pathwise Derivative Method.

I This stems from the observation that the Pathwise Estimator in

θ̄k ≡
dPθ(X )

dθk
=

d∑
j=1

∂Pθ(X )

∂Xj
×
∂Xj

∂θk
+
∂Pθ(X )

∂θk
,

is a l.c. of the rows of the Jacobian of the map θ → X (θ), with
weights given by the X gradient of the payout function Pθ(X ), plus
the derivatives of the payout function with respect to θ.

I Both the calculation of the derivatives of the payout and of the linear
combination of the rows of ∂X/∂θ are tasks that can be performed
efficiently by AAD.

I We know now that we can compute all the Pathwise sensitivities with
respect to θ, θ̄, at a cost that is at most roughly 4 times the cost of
calculating the payout estimator itself.
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AAD enabled Monte Carlo Engines

AAD enabled Monte Carlo Engines:: Forward Sweep

I In a typical MC simulation, in order to generate each sample X [iMC],
the evolution of the process X is usually simulated, possibly by means
of an approximate discretization scheme, by sampling X (t) on a
discrete grid of points, 0 = t0 < t1 < . . . < tn < · · · < tNs , a superset
of the observation times (T1, . . . ,TM).

I The state vector at time tn+1 is obtained by means of a function of
the form

X (tn+1) = PROPn[{X (tm)}m≤n,Z (tn), θ],

mapping the set of state vector values on the discretization grid up to
tn, {X (tm)}m≤n, into the value of the state vector at time tn + 1.
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AAD enabled Monte Carlo Engines

AAD enabled Monte Carlo Engines: Forward Sweep

I Note that in X (tn+1) = PROPn[{X (tm)}m≤n,Z (tn), θ] :

a The propagation method is a function of the model parameters θ and
of the particular time step considered.

b Z (tn) indicates the vector of uncorrelated random numbers which are
used for the MC sampling in the step n→ n + 1.

c The initial values of the state vector X (t0) are known quantities and
they can be considered as components of θ so that the n = 0 step is of
the form, X (t1) = PROP0[Z (t0), θ].

I Once the full set of state vector values on the simulation time grid
{X (tm)}m≤Ns is obtained, the subset of values corresponding to the
observation dates is passed to the the payout function, evaluating the
payout estimator Pθ(X ) for the specific random sample X [iMC]

(X (T1), . . . ,X (TM))→ Pθ(X (T1), . . . ,X (TM)).
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AAD enabled Monte Carlo Engines

AAD enabled Monte Carlo Engines: Forward Sweep

Schematic illustration of the orchestration of a MC engine.
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AAD enabled Monte Carlo Engines

AAD enabled Monte Carlo Engines: Backward Sweep

I The evaluation of a MC sample of a Pathwise Estimator can be seen
as an algorithm implementing a function of the form θ → P(θ).

I As a result, it is possible to design its Adjoint counterpart
(θ, P̄)→ (P, θ̄) which gives (for P̄ = 1) the Pathwise Derivative
Estimator dP/dθk .

I The backward sweep can be simply obtained by reversing the flow of
the computations, and associating to each function its Adjoint
counterpart.
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AAD enabled Monte Carlo Engines

AAD enabled Monte Carlo Engines: Backward Sweep

I In particular, the first step of the Adjoint algorithm is the Adjoint of
the payout evaluation P = P(X , θ). This is a function of the form

(X̄ , θ̄) = P̄(X , θ, P̄),

where X̄ = (X̄ (T1), . . . ,X (TM)) is the Adjoint of the state vector on
the observation dates, and θ̄ is the Adjoint of the model parameters
vector, respectively (for P̄ = 1)

X̄ (Tm) =
∂Pθ(X )

∂X (Tm)
,

θ̄ =
∂Pθ(X )

∂θ
,

for m = 1, . . . ,M. The Adjoint of the state vector on the simulation
dates corresponding to the observation dates are initialized at this
stage. The remaining ones are initialized to zero.
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AAD enabled Monte Carlo Engines

AAD enabled Monte Carlo Engines: Backward Sweep

I The Adjoint state vector is then propagated backwards in time
through the Adjoint of the propagation method, namely

({X̄ (tm)}m≤n, θ̄) +=

PROP bn[{X (tm)}m≤n,Z (tn), θ, X̄ (tn+1)],

for n = Ns − 1, . . . , 1 , giving

X̄ (tm) +=
N∑

j=1

X̄j (tn+1)
∂Xj (tn+1)

∂X (tm)
,

with m = 1, . . . , n,

θ̄+=
N∑

j=1

X̄j (tn+1)
∂Xj (tn+1)

∂θ
.
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AAD enabled Monte Carlo Engines

AAD enabled Monte Carlo Engines: Backward Sweep

I Here, according to the principles of AAD, the Adjoint of the
propagation method takes as arguments the inputs of its forward
counterpart, namely the state vectors up to time tn, {X (tm)}m≤n, the
vector of random variates Z (tn), and the θ vector. The additional
input is the Adjoint of the state vector at time tn+1, X̄ (tn+1).

I The return values of PROP bn are the contributions associated with
the step n + 1→ n to the Adjoints of

i) the state vector {X̄ (tm)}m≤n;
ii) the model parameters θ̄k , k = 1, . . . ,Nθ.

I The final step of the backward propagation corresponds to the
Adjoint of X (t1) = PROP0[Z (t0), θ], giving

θ̄+= PROP b0[X (t0)Z (t0), θ, X̄ (t1)],

i.e., the final contribution to the Adjoints of the model parameters.
I It is easy to verify that the final result is the Pathwise Derivative

Estimator dP/dθk for all k’s on the given MC path.
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AAD enabled Monte Carlo Engines

AAD enabled Monte Carlo Engines: The complete
blueprint

I The resulting algorithm can be illustrated as follows:

Schematic illustration of the orchestration of an AAD enabled MC engine.
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Section 7

First Applications
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First Applications

Diffusion Processes and Euler Discretization

I As a first example, consider the case in which the underlying factors
follow multi dimensional diffusion processes introduced in slide 9

dX (t) = µ(X (t), t, θ) dt + σ(X (t), t, θ) dWt .

I In this case, the evolution of the process X is usually approximated by
sampling X (t) on a discrete grid of points by means, for instance, of
an Euler scheme, so that the propagation function

X (tn+1) = PROPn[{X (tm)}m≤n,Z (tn), θ]

implements the rule

X (tn+1) = X (tn) + µ(X (tn), tn, θ) hn + σ(X (tn), tn, θ)
√
hn Z

′(tn),

where hn = tn+1 − tn, and Z (tn) is a N-dimensional vector of
correlated unit normal random variables.
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First Applications

Diffusion Processes and Euler Discretization: Forward
Sweep

I In particular, given the state vector at time tn, X (tn), and the vector
Z (tn), one can implement the method PROPn according to the
following steps:

Step 1. Compute the drift vector, by evaluating the function:

µ(tn) = µ(X (tn), tn, θ) .

Step 2. Compute the volatility matrix, by evaluating the function:

σ(tn) = σ(X (tn), tn, θ) .

Step 3. Compute the function

(X (tn), µ(tn), σ(tn),Z (tn), θ)→ X (tn+1) ,

defined by

X (tn+1) = X (tn) + µ(tn)hn + σ(tn)
√
hnZ (tn) .
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First Applications

Diffusion Processes and Euler Discretization: Backward
Sweep

I The corresponding Adjoint method PROP bn is executed from time
step tn+1 to tn and consists of the Adjoint counterpart of each of the
steps above executed in reverse order, namely:

Step 3̄. Compute the Adjoint of the function defined by Step 3. This is a
function

(X (tn), µ(tn), σ(tn),Z (tn), X̄ (tn+1))→ X̄ (tn)

defined by the instructions

X̄ (tn) += X̄ (tn+1),

µ̄(tn) = 0, µ̄(tn) += X̄ (tn+1)hn,

σ̄(tn) = 0, σ̄(tn) += X̄ (tn+1)
√

hnZ
T (tn),

Z̄ (tn) = 0, Z̄ (tn) += X̄ (tn+1)
√
hnσ

T (tn).
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First Applications

Diffusion Processes and Euler Discretization: Backward
Sweep

I And:

Step 2̄. Compute the Adjoint of the volatility function in Step 2, namely

X̄i (tn) +=
N∑

l,m=1

σ̄l,m(tn)
∂σl,m(tn)

∂Xi
, θ̄k +=

N∑
l,m=1

σ̄l,m(tn)
∂σl,m(tn)

∂θk
,

for i = 1, . . . ,N and k = 1, . . . ,Nθ.
Step 1̄. Compute the Adjoint of the drift function in Step 1, namely

X̄i (tn) +=
N∑

j=1

µ̄j (tn)
∂µj (tn)

∂Xi (tn)
, θ̄k +=

N∑
j=1

µ̄j (tn)
∂µj (tn)

∂θk
,

for i = 1, . . . ,N and k = 1, . . . ,Nθ.
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First Applications

Diffusion Processes and Euler Discretization: Backward
Sweep

I Note that in the algorithm above we have followed the rules described
in Slide 64 with respect to initializing and incrementing the Adjoints
of intermediate variables.

I Note that, the variables X̄ (tn+1), X̄ (tn) and θ̄ typically contain on
input the derivatives of the payout function. During the backward
propagation X̄ (tn) (resp. θ̄) accumulate several contributions, one for
each Adjoint of an instruction in which X (tn) (resp. θ) is on the right
hand side of the assignment operator in the forward sweep (Steps
1-3).

I The implementation of the Adjoint of the drift and volatility functions
in Step 2̄ and Step 1̄ is problem dependent. In many cases, the drift
and volatility may be represented by computer routines self-contained
enough to be processed by means of an automatic differentiation tool,
thus facilitating the implementation.
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First Applications

Basket Options: Results

I Let’s consider again the Basket Option example introduced earlier
(see slide 49) for the Payoff.

CPU time ratios for the calculation of Delta and Vega Risk as a function of the number of

underlying assets. N: circles (AAD), triangles (Bumping).
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First Applications

Basket Options: Comments

I The performance of the AAD implementation of the Pathwise
Derivative Method in this setup is well within the expected bounds.

I In particular, the computation of the 2× N sensitivities for the N
assets requires a very small overhead (of about 130%) with respect to
the calculation of the option value itself. This is true for any number
of underlying assets.

I This is in stark contrast with the relative cost of evaluating the same
sensitivities by means of finite-differences, scaling linearly with the
number of assets.

I For typical applications this clearly results in remarkable speedups
with respect to bumping.
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Section 8

Case Study: Adjoint Greeks for the Libor Market
Model
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Case Study: Adjoint Greeks for the Libor Market Model

Libor Market Model

I In order to make the connection with the algebraic implementations
of Adjoint methods described before let’s consider again the Libor
Market Model (see Slide 14 and ff.).

dLi (t)

Li (t)
= µi (L(t))dt + σi (t)TdWt .

I Denson and Joshi [4] extended the original implementation of Giles
and Glasserman [2] to include the more accurate predictor-corrector
scheme, consisting in replacing the usual Euler drift in Slide 15 with

µpc
i (L(tn)) =

1

2

i∑
j=η(nh)

(
σT

i σjδLj (tn)

1 + δLj (tn)
+
σT

i σjδL̂j (tn+1)

1 + δL̂j (tn+1)

)

where L̂j (tn+1) is calculated from Lj (tn) using the simple Euler drift.
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Case Study: Adjoint Greeks for the Libor Market Model

Libor Market Model: Forward Sweep

Pseudocode implementing the propagation method PROPn for the Libor Market Model for

dW = 1, under the predictor corrector Euler approximation.
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Case Study: Adjoint Greeks for the Libor Market Model

Libor Market Model: Backward Sweep

Adjoint of the propagation method PROP bn.
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Case Study: Adjoint Greeks for the Libor Market Model

Libor Market Model: Comments on the Code

I The algebraic formulation discussed in [4] comes with a significant
analytical effort. Instead, as illustrated in the Figure above, the AAD
implementation is quite straightforward.

I According to the general design of AAD, this simply consists of the
Adjoints of the instructions in the forward sweep executed in reverse
order.

I In this example, the information computed by PROP that is required
by PROP b is stored in the vectors scra and hat scra.

I By inspecting the structure of the pseudocode it also appears clear
that the computational cost of PROP b is of the same order as
evaluating the original function
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Case Study: Adjoint Greeks for the Libor Market Model

Libor Market Model: Results

Ratio of the CPU time required for the calculation of Delta and Vega and the time to calculate

the option value for the Swaption as a function of the option expiry Tn.
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Conclusions

Conclusions

I We have shown how Adjoint Algorithmic Differentiation (AAD) can
be used to implement the Adjoint calculation of price sensitivities in a
straightforward manner and in complete generality.

I Like its algebraic counterpart, the proposed method allows the
calculation of the complete risk at a computational cost which is at
most 4 times the cost of calculating the P&L of the portfolio itself,
resulting in remarkable computational savings with respect to
standard finite differences approaches.
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Conclusions

Conclusions

I In contrast to algebraic Adjoint methods, however, the algorithmic
approach can be straightforwardly applied to both path dependent
options and multi asset simulations. It also eliminates altogether the
need for the sometimes cumbersome analytical work required by
algebraic formulations.

I In this respect the Libor Market Model example we discuss is
enlightening: a lenghty algebraic analysis can be substituted by the
few lines of codes that can be written with the simples recipes
presented in the paper.

I For these reasons, Algorithmic Differentiation is crucial to make
Adjoint implementations practical in an industrial environment.
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