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Correlation Structure of the Random Variates

Recall the general AAD MC design for the computation of the estimators
on each MC path:
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Correlation Structure of the Random Variates

I In the AAD MC design we have assumed for simplicity that the
random variates Z (tn) entering in the propagation method:

X (tn+1) = PROPn[{X (tm)}m≤n,Z (tn), θ],

are dummy variables carrying no interesting sensitivities.

I As a result, in the corresponding adjoint propagation methods:

({X̄ (tm)}m≤n, θ̄) += PROP bn[{X (tm)}m≤n,Z (tn), θ, X̄ (tn+1)],

the adjoint of the random variates Z̄ (tn) do not appear among the
output.

I If we want to compute the sensitivities with respect to the correlation
structure of the random variates, this scheme needs to be extended.
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Correlation Structure of the Random Variates

I In a typical setup, the random variates Zi driving the random
processes are correlated.

I For instance, assume that the random variates Z ′(tn) are jointly
normal, and denote with ρij (tm) = E[Zi (tm)Zj (tm)] the correlation
matrix.

I Uncorrelated random variates Z ′(tn) are therefore mapped into their
correlated counterparts Z (tn) and then used to implement the
propagation step X (tn)→ X (tn+1) so that the propagation step is
modified as

Z (tn) = CORRELATE(Z ′(tn), θ)

X (tn+1) = PROPn[{X (tm)}m≤n,Z (tn), θ] ,

where we have included the correlation parameters defining the
correlation matrix ρ in the vector θ.
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Modified Adjoint of the Propagation Step

I The adjoint of the Propagation Step

X (tn+1) = PROPn[{X (tm)}m≤n,Z (tn), θ],

is modified as

({X̄ (tm)}m≤n, θ̄, Z̄ (tn)) += PROP bn[{X (tm)}m≤n,Z (tn), θ, X̄ (tn+1)],

where

X̄ (tm) +=
N∑

j=1

X̄j (tn+1)
∂Xj (tn+1)

∂X (tm)
θ̄+=

N∑
j=1

X̄j (tn+1)
∂Xj (tn+1)

∂θ
,

with m = 1, . . . , n. Here the additional output is given by the adjoint
of the correlated variates:

Z̄ (tn) +=
N∑

j=1

X̄j (tn+1)
∂Xj (tn+1)

∂Z (tn)
.
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Adjoint of the Correlation Step

I The adjoint of the Correlation Step

Z (tn) = CORRELATE(Z ′(tn), θ),

reads
θ̄+= CORRELATE b(Z ′(tn), θ, Z̄ (tn)),

corresponding to the operation

θ̄+=
N∑

j=1

Z̄ ′j (tn)
∂Zj (tn)

∂θ

updating the components of the vector θ corresponding to the adjoint
of the correlation parameters.

Luca Capriotti Efficient Risk Management in Monte Carlo 4 9 / 34



Correlation Greeks and Binning Techniques

Example: Cholesky Factorization

I In a simple setup the method CORRELATE generally involves the
so-called Cholesky factorization of an N × N correlation matrix ρ.

I Recall that the Cholesky factorization of a Hermitian positive-definite
matrix ρ produces a lower triangular N × N matrix L such that
ρ = LLT .

I Given the Cholesky factor L, and a vector of N uncorrelated normal
Z ′, it is immediate to verify that Z = LZ ′ are correlated normal such
that E[ZiZj ] = ρij
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Adjoint of the Cholesky Factorization

I When implemented in terms of the Cholesky factorization, the
method CORRELATE reads

Step 1 Perform Cholesky factorization, say L = CHOLESKY(ρ).
Step 2 Compute: Z = LZ ′.

I The corresponding method CORRELATE b reads
Step 2̄ Compute: L̄ = Z̄Z ′t .
Step 1̄ Compute: ρ̄ = CHOLESKY b(ρ, L̄), where

ρ̄i,j =
N∑

l,m=1

∂Ll,m

∂ρi,j
L̄l,m,

providing the sensitivities with respect to the entries of the correlation
matrix. These are copied in the appropriate components of the vector
θ̄.

I Note that Z ′ are now dummy integration variables (sampled
stochastically). Thefore their adjoints Z̄ ′ are not computed.
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Adjoint of the Cholesky Factorization (Pseudocode)

Cholesky_b(rho, L_b,rho_b)   

   // Forward Sweep        
   for (i=0 .. n-1)                 
      for (j=i .. n-1)                       
      sum[i,j] = rho[i,j];                        

 for (k=i-1 .. 0)                                
    sum[i,j] -= L[i,k] * L[j,k];                        
    if (i == j) 

           L[i,i] = sqrt(sum[i,j]);                        
    else                                 
      L[j,i] = sum[i,j] / L[i,i];                        
        

   // Backward Sweep        
   for (i=n-1 .. 0)                 
      for (j=n-1 .. i)                         

    sum_b =  0.0;                        

         if (i == j)                                 
      if (sum[i,j] == 0.0) 

              sum_b = 0.0;  
           else 
              sum_b = L_b[i,j]/( 2.0 * L[i,j]);                                 
           L_b[i,j] = 0.0;                        
         else                                 
           sum_b = L_b[j,i]/L[i,i];                                
           L_b[i,i] -= sum[i,j] * sum_b / L[i,i]; 
           L_b[j,i] = 0.0; 

         for (k=i-1 .. 0)  
           L_b[i,k] -= L[j,k]*sum_b; 
           L_b[j,k] -= L[i,k]*sum_b; 

     
    rho_b[i,j] += sum_b; 
   

The adjoint algorithm contains the original
Cholesky factorization plus a backward
sweep with the same complexity and a
similar number of operations.

Hence, as expected, the computational cost
is just a small multiple (of order 2, in this
case) of the cost of evaluating the original
factorization.
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Adjoint of the Cholesky Factorization

I The Cholesky factorization L = CHOLESKY(ρ) does not depend on the
random variates Z therefore it can be performed before the first
Monte Carlo path is performed. As a result, CORRELATE consists of
the matrix multiplication Z = LZ ′, only.

I Similarly the Adjoint of CORRELATE b consists only of the step
L̄ = Z̄ ′Z t , (θ̄ will contain the adjoint of the Cholesky factors L rather
than the entries of the correlation matrix ρ) and the Adjoint of the
Cholesky factorization

ρ̄ = CHOLESKY b(ρ, L̄)

can be performed after the end of the backward sweep after the last
MC path..
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Statistical Uncertainties

I Given the MC estimators for the Cholesky factors sensitivities
〈L̄〉 = 〈∂V (X )/∂L〉 and their statistical uncertainties

〈L̄〉 =
1

NMC

NMC∑
iMC=1

L̄(X [iMC]) σL̄ =

√√√√ 1

NMC

NMC∑
iMC=1

(
L̄(X [iMC])2 − 〈L̄〉

)2

I One can compute the estimator for the correlation sensitivities via the
Cholsesky factorization

〈ρ̄〉 = CHOLESKY b(ρ, 〈L̄〉)

but not their sensitivities:

σρ̄ 6= CHOLESKY b(ρ, σL̄)

I Performing the adjoint of the Cholesky decomposition once per
simulation does not allow the calculation of a confidence interval for
the correlation sensitivities.
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Path by Path Adjoint Cholesky Factorization

I An alternative approach would be to convert L̄ to ρ̄ for each
individual path iMC = 1, . . . ,NMC

ρ̄(X [iMC]) = CHOLESKY b(ρ, L̄(X [iMC]))

and then compute the average and standard deviation of ρ̄[iMC] in the
usual way:

〈ρ̄〉 =
1

NMC

NMC∑
iMC=1

ρ̄(X [iMC]) σρ̄ =

√√√√ 1

NMC

NMC∑
iMC=1

(
ρ̄(X [iMC])2 − 〈ρ̄〉

)2

However, this is rather costly.
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Binning

I An excellent compromise between these two extremes is to divide the
NMC paths into NB ’bins’ of equal size n = N/NB.

I For each bin jB = 1, . . . ,NB, an average value of 〈L̄〉jB is computed

〈L̄〉jB =
1

n

n∑
iMC=1

L̄(X [iMC])

and converted into a corresponding value for

〈ρ̄〉jB = CHOLESKY b(ρ, 〈L̄〉jB).
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Binning

I These Nb estimates for ρ̄ can then be combined in the usual way to
form an overall estimate of the correlation risk:

〈ρ̄〉 =
1

NB

NB∑
jB=1

〈ρ̄〉jB =
1

NMC

NMC∑
iMC=1

ρ̄(X [iMC]),

where the second equality follows from the linearity of the adjoint
functions, and the associated confidence interval:

σρ̄ =

√√√√ 1

NB

NB∑
jB=1

(
〈ρ̄〉2jB − 〈ρ̄〉

)2
.
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Binning

I In the standard evaluation, the cost of the Cholesky factorization is
O(N3), and the cost of the MC sampling is O(NMCN

2), so the total
cost is O(N3 + NMCN

2). Since NMC is always much greater than N,
the cost of the Cholesky factorization is usually negligible.

I The cost of the adjoint steps in the MC sampling is also O(NMCN
2),

and when using Nb bins the cost of the adjoint Cholesky factorization
is O(NBN

3).

I To obtain an accurate confidence interval, but with the cost of the
Cholesky factorisation being negligible, requires that NB is chosen so
that 1� NB � NMC/N.

I Without binning, i.e., using NB = NMC, the cost to calculate the
average of the estimators for 〈ρ〉 is O(NMCN

3), and so the relative
cost compared to the evaluation of the option value is O(N).
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Binning and Risk Transforms

I We have presented Binning in the context of the calculation of
correlation risk, but there is nothing specific to correlation. In fact
these ideas can be applied everytime some computational
preprocessing is performed before the MC simulation, and we need to
transform the adjoint MC estimators and their confidence interval
into the corresponding quantities for the inputs of such preprocessing.

I This is the case for instance when a calibration routine performed
before the MC simulation transforms some market inputs
M = (M1, . . . ,MNM

), corresponding to the observable prices of
securities which the model is calibrated to, into the set of internal
model parameters that are used in the MC simulation θ:

θ = CALIBRATION(M).
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Binning and Risk Transforms

I The binned MC estimators of the adjoint of the internal model
parameters 〈θ̄〉jB can be transformed into binned MC estimators of
the market inputs

〈M̄〉jB = CALIBRATION B(M, 〈θ̄〉jB).

I Then their distribution can be used to construct the overall MC
estimator and the associated statistical uncertainty

〈M̄〉 =
1

NB

NB∑
jB=1

〈M̄〉jB ,

σM̄ =

√√√√ 1

NB

NB∑
jB=1

(
〈M̄〉2jB − 〈M̄〉

)2
.
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Case Study: Correlation Greeks for Basket Default
Contracts
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Case Study: Correlation Greeks for Basket Default Contracts

Credit Basket Contracts

I Credit basket contracts are derivatives that are contingent on credit
events (defaults for short) of a pool of reference entities typically
sovereign, financial or corporate. Generally the credit event is defined
as failure to pay a specific liability, say a coupon on a specific bond or
category of bonds referenced by the contract, but it can include other
events not involving a proper default, like a restructuring of the debt,
or regulatory action on a financial institution.

I n-th to default, Collateralized Debt Obligations (CDO) and their
variations are examples of credit basket products.

I In the context of basket credit default products the random factors Xi

are the time of default τi of the i-the reference entity in a basket of N
names and the payoff is of the form:

P = P(τ1, . . . , τN)
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Case Study: Correlation Greeks for Basket Default Contracts

Example: n-th to default Basket Default Swap

I In a n-th to default Basket Default Swap one party (protection buyer)
makes regular payments to a counterparty (protection seller) at time
T1, . . . ,TM ≤ T provided that less than n defaults events among the
components of the basket are observed before time TM .

I If n defaults occur before time T , the regular payments cease and the
protection seller makes a payment to the buyer of (1− Ri ) per unit
notional, where Ri is the normalized recovery rate of the i-th asset.

I The value at time zero of the Basket Default Swap on a given
realization of the default times τ1, . . . , τN , i.e., the Payout function,
can be expressed as

P(τ1, . . . , τN) = Pprot(τ1, . . . , τN)− Pprem(τ1, . . . , τN)

i.e., as the difference between the so-called protection and premium
legs.
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Example: n-th to default Basket Default Swap

I The value leg is given by

Pprot(τ1, . . . , τN) = (1− Rn)D(τ)I(τ ≤ T ),

where Rn and τ are the recovery rate and default time of the n-th to
default, respectively, D(t) is the discount factor for the interval [0, t]
(here we assume for simplicity uncorrelated default times and interest
rates), and I(τ ≤ T ) is the indicator function of the event that the
n-th default occurs before T .

I The premium leg reads instead, neglecting for simplicity any accrued
payment,

Pprem(τ1, . . . , τN) =

TM∑
k=1

skD(Tk )I(τ ≥ Tk )

where ck is the premium payment (per unit notional) at time Tk .
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Copula Models

I Credit Basket Products are also known as correlation products
because their value depends not only on the marginal distribution of
the default times but also on their correlation structure.

I Such correlation structure is typically captured by means of a copula
model. For instance, in a Gaussian copula, the cumulative joint
distribution of default times is assumed of the form:

P(τ1 ≤ t1, . . . , τN ≤ tN) = ΦN(Φ−1(F1(t1)), . . . ,Φ−1(FN(tN)); ρ)

where ΦN(Z1, . . . ,ZN ; ρ) is a N-dimensional multivariate Gaussian
distribution with zero mean, and a N × N positive semidefinite
correlation matrix ρ; Φ−1 is the inverse of the standard normal
cumulative distribution, and Fi (t) = P(τi ≤ t), i = 1, . . . ,N, are the
marginal distributions of the default times of each reference entity,
depending on a set of model parameters θ.
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Hazard Rate Model

I The key concept for the valuation of credit derivatives, in the context
of the models generally used in practice, is the hazard rate, λu,
representing the probability of default of the reference entity between
times u and u + du, conditional on survival up to time u. The hazard
rate function λu i s commonly parameterized as piece-wise constant
with M knot points at time (t1, . . . , tM), λ = (λ1, . . . , λM), .

I By modelling the default event of a reference entity i as the first
arrival time of a Poisson process with intensity λi

u, the survival
probability, P(τi > t), is given by

P(τi > t) = exp

[
−
∫ t

0
du λu

]
,

so that the marginal cumulative distribution of default times reads

Fi (t;λi ) = P(τ ≤ t) = 1− exp

[
−
∫ t

0
du λi

u

]
,
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Forward Simulation Algorithm

The simulation of a Gaussian Copula model can be seen as a single
time-step instance of the general approach, consisting of the following
steps:

Step 0 Perform a Cholesky factorization of the matrix ρ, say
L = CHOLESKY(ρ).

For each MC replication:

Step 1 Generate a N dimensional vector of uncorrelated normal
Gaussian variates Z ′.

Step 2 Correlate the random variates: Z = CORRELATE(Z ′, L), where
as previously discussed the correlation step consist of a single matrix
vector multiplication Z = LZ ′.

Step 3 Perform the ‘propagation step’ τ = PROP0[Z , θ].

Step 4 Evaluate the payout function: P = P(τ).
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Forward Simulation Algorithm

I From the form of the cumulative joint distribution of default times

P(τ1 ≤ t1, . . . , τN ≤ tN ) = ΦN (Φ−1(F1(t1;λ1)), . . . ,Φ−1(FN (tN , λ
N )); ρ)

it follows that the random variates Φ−1(F1(τi , λ
i )) are distributed

according to a multivariate normal distribution.
I Hence the propagation step τ = PROP0[Z , θ] consists in turn of the

following sub-steps:

Step 3a Set Ui = Φ(Zi ), i = 1, . . . ,N.
Step 3b Set τi = F−1

i (Ui ;λi ), i = 1, . . . ,N.

where F−1
i (Ui ;λi ) is the root τi of the equation

exp

[
−
∫ τi

0
du λi

u

]
= 1− Ui .
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Adjoint Simulation Algorithm

I The corresponding adjoint algorithm consists of the following steps:

Step 4̄ Evaluate the adjoint Payout τ̄i = ∂P/∂τi , for i = 1, . . . ,N.
Step 3̄ Evaluate the adjoint of the propagation step:

(λ̄, Z̄ ) = PROP b0[Z , θ, τ̄ ]

Step 2̄ Calculate the adjoint of the correlation step:

L̄ = CORRELATE b(Z ′, Z̄ ),

implemented as
L̄ = Z̄Z ′

t
.
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Adjoint Simulation Algorithm

I In turn, the adjoint of the corelation step reads:

Step 3̄b Calculate:

Ūi = τ̄i
∂F−1

i (Ui ;λ
i )

∂U i
= τ̄i

1

fi (F
−1
i (Ui ;λi );λ)

,

λ̄i
j = τ̄i

∂F−1
i (Ui ;λ

i )

∂λi
j

,

for i = 1, . . . ,N and j = 1, . . . ,M.

Step 3̄a Calculate: Z̄i = Ūiφ(Zi ), i = 1, . . . ,N.

where fi (t;λ) = ∂F (t;λ)/∂t is the p.d.f. of the default time of the
i-th reference entity and φ(x) is the standard normal p.d.f. Note that
computing the derivative ∂F−1

i (Ui ;λ
i )/∂λi

j involves differentiating
the root searching algorithm used to determine the default time τi .
However, a much better implementation is possible by means of the
so-called implicit function theorem [1].
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Payout Smoothiong

I In order to apply the Pathwise Derivative method to the payout
above, the indicator functions in the premium and protection legs

Pprem(τ1, . . . , τN) =

TM∑
k=1

skD(Tk )I(τ ≥ Tk ),

Pprot(τ1, . . . , τN) = (1− Rn)D(τ)I(τ ≤ T ),

need to be regularized.

I As seen before, one simple and practical way of doing that is to
replace the indicator functions with their smoothed counterpart, at
the price of introducing a small amount of bias in the Greek
estimators.

I For the problem at hand, as it is also generally the case, such bias can
be easily reduced to be smaller than the statistical errors that can be
obtained for any realistic number of MC iteration NMC.
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Results

Ratios of the CPU time required for the calculation of the option value, and correlation Greeks,

and the CPU time spent for the computation of the value alone, as functions of the number of

names in the basket. Symbols: Bumping (one-sided finite differences) (triangles), AAD without

binning (i.e. NB = NMC) (stars), AAD with binning (NB = 20) (empty circles).
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Results

I As expected, for standard finite-difference estimators, such ratio
increases quadratically with the number of names in the basket.
Already for medium sized basket (N ' 20) the cost associated with
Bumping is over 100 times more expensive than the one of AAD.

I Nevertheless, at a closer look (see the inset) the relative cost of AAD
without binning is O(N), because of the contribution of the adjoint of
the Cholsesky decomposition.

I However, when using NB = 20 bins the cost of the adjoint Cholesky
computation is negligible and the numerical results show that all the
Correlation Greeks can be obtained with a mere 70% overhead
compared to the calculation of the value of the option.

I This results in over 2 orders of magnitude savings in computational
time for a basket of over 40 Names.
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