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Abstract
A recently introduced Importance Sampling strategy based on a least squares opti-
mization is applied to the Monte Carlo simulation of Libor Market Models. Such Least
Squares Importance Sampling (LSIS) allows the automatic optimization of the sam-
pling distribution within a trial class by means of a quick presimulation algorithm of
straightforward implementation. With several numerical examples we show that LSIS
can be extremely effective in reducing the variance of Monte Carlo estimators often

1. Introduction
The level of sophistication of the models employed by investment firms
for pricing derivative securities is dramatically increasing in the contin-
uous search for a possible edge against competitors. As a result, most of
the models used in practice is too complex to be treated by analytic or
deterministic numerical methods, and Monte Carlo simulation becomes
more often than ever the only feasible means of pricing and hedging.

The main limitation of Monte Carlo simulations is their computational
cost. In fact, being stochastic in nature, their outcome is always affected by
a statistical error, that can be generally reduced to the desired level of 
accuracy by iterating the calculation for long enough time. This comes
with a high computational cost as such statistical uncertainties, all things
being equal, are inversely proportional to the square root of the number of
statistically independent samples. Hence, in order to reduce the error by a
factor of 10 one has to spend 100 times as much computer time. For this
reason, to be used on a trading floor, Monte Carlo simulations often 
require to be run on large parallel computers with a high financial cost in
terms of hardware, infrastructure, and software development.

Several approaches to speed-up Monte Carlo calculations, such as
Antithetic Variables, Control Variates, and Importance Sampling, have
been proposed over the last few years [6]. These techniques aim at reducing
the variance per Monte Carlo observation so that a given level of accuracy
can be obtained with a smaller number of iterations. In general, this can
be done by exploiting some information known a priori on the structure
of the problem at hand, like a symmetry property of the Brownian paths

(Antithetic Variables), the value of a closely related security (Control
Variates), or the form of the statistical distribution of the random samples
(Importance Sampling). Antithetic Variables and Control Variates are the
most commonly used variance reduction techniques, mainly because of
the simplicity of their implementation, and the fact that they can be 
accommodated in an existing Monte Carlo calculator with a small effort.
However, their effectiveness varies largely across applications, and is some-
times rather limited [6].

On the other hand, Importance Sampling techniques, although poten-
tially more powerful, have not been employed much in professional con-
texts until recently. This is mainly because they generally involve a bigger
implementation effort. Moreover, when used improperly, Importance
Sampling can increase the variance of the Monte Carlo estimators, thus
making its integration in an automated environment more delicate.
Nonetheless, the potential efficiency gains at stake are so large that the 
interest in finding efficient Importance Sampling schemes is still very
high.

The idea behind Importance Sampling is to reduce the statistical 
uncertainty of a Monte Carlo calculation by focusing on the most impor-
tant sectors of the space from which the random samples are drawn.
Such regions critically depend on both the random process simulated,
and the structure of the security priced. For instance, for a deep out-of-
the money Call option [13], the payoff sampled is zero for most of the 
iterations of a Monte Carlo simulation. Hence, simulating more samples
with positive payoff reduces the variance. This can be done by changing
the probability distribution from which the samples are drawn, and



dX(t) = µ(X(t), t)dt + σ (X(t), t)dWt. (2.1)

Here the process X(t) and the drift µ(X, t) are both L-dimensional real
vectors, Wt is a N-dimensional standard Brownian motion, and the
volatility, σ (X, t), is a L × N real matrix. We will consider the problem
of estimating the value at time t = 0, of contracts depending on the
path followed by X(t) within a certain interval [0, T]. This is given by the
expectation value under the risk neutral probability measure, P [12] of
the (discounted) payout functional G[X(T)]

V = EP [G[X(T)]]. (2.2)

Continuous time processes of the form (2.1) are typically simulated by
sampling X(t) on a discrete grid of points, 0 = t0 < t1 < . . . < tM = T, by
means, for instance, of a Euler schemea

Xi+1 = Xi + µ(Xi, t)�ti + σ (Xi, t)
√

�tiZ̃i+1, (2.3)

where Xi = X(ti), �ti = ti+1 − ti, and Z̃i+1 is a N-dimensional vector of 
independent standard normal variates. In this representation, each 
discretized path for the vector process X(t) can be put into a one to one
correspondence with a set of d = N × M independent standard normal
variables Z. As a result, the original problem of evaluating the expecta-
tion value of a functional of the realized path of the process X(t) can be
formulated as the calculation of expectation values of the form

V = EP [G(Z)] =
∫

dZ G(Z) P(Z), (2.4)

where G(Z) = G(Z1, . . . , Zd) is the scalar function obtained by discretizing
the payout functional G[X(T)] on a mesh of d sampling points, and the
density is given by a d-dimensional standard normal distribution

P(Z) = N(0, Id) ≡ (2π)−d/2e−Z2 /2, (2.5)

where Z2 = Z · Z. For instance, for the familiar Call option in the Black-
Scholes framework [13] one has d = 1, P(Z) = (2π)−1/2 exp(−Z2/2) and

G(Z) = e−rT

(
X0 exp

[(
r − σ 2

2

)
T + σ

√
TZ

]
− K

)+
(2.6)

where r is the risk-free interest rate, σ is the volatility, X0 and K are 
respectively the spot and strike price, and T the maturity of the option.

Whenever the dimension d of the state variable Z is large (say d>∼5)
standard numerical quadrature approaches become highly inefficient,
and Monte Carlo methods are the only feasible route for estimating 
expectation values of the form (2.4). To do so, one interprets Eq. (2.4) as a
weighted average of the payout function G(Z) over the possible configura-
tions Z with weights given by the probability distribution P(Z). This 
immediately leads to the simplest (and crudest) Monte Carlo estimator
which is obtained by averaging the payout function over a sample of Np

independent values of the random variable Z generated according to the
probability distribution P(Z),
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reweighing the payout function by the appropriate likelihood-ratio
(Radon-Nikodym derivative) in order to produce an unbiased result of the
original problem [6].

Most of the work in Importance Sampling methods for security pricing
has been done in a Gaussian setting [17,2,21,7,8,18,19,1,10] such the one
arising from the simulation of a diffusion process. In this framework,
Importance Sampling is achieved by modifying the drift term of the simu-
lated process in order to drive the Brownian paths towards the regions
that are the most important for the evaluation of the security. For 
instance, for the Call option above, this can be obtained by increasing the
drift term up to a certain optimal level [17,2]. The different approaches
proposed in the literature, essentially differ in the way in which such
change of drift is found, and can be roughly divided into two families 
depending on the strategy adopted. The first strategy, common to the 
so-called adaptive Monte Carlo methods [21,18,19,1], aims to determine the
optimal drift through stochastic optimization techniques that typically
involve an iterative algorithm. On the other hand, the second strategy,
proposed in a remarkable paper by Glasserman, Heidelberger, and
Shahabuddin (GHS) [7], relies on a deterministic optimization procedure
that can be applied for a specific class of payouts.

In a recent paper [5], we introduced the Least Squares Importance
Sampling (LSIS) technique, as an alternative and flexible variance reduc-
tion strategy for Monte Carlo security pricing. This approach, originally
proposed in Physics for the optimization of quantum mechanical wave
functions of correlated electrons [20], was shown in Ref. [5] to provide an
effective tool also for financial applications. In LSIS the determination of
the optimal drift – or more in general of the most important regions of
the sample space – is formulated in terms of a least squares minimiza-
tion. This technique can be easily implemented and included in an exist-
ing Monte Carlo code, and simply relies on a standard least square
algorithm for which several optimized libraries are available.

In this paper we apply the LSIS strategy to the simulation of a multi-
factor Libor Market Model, and test its effectiveness on a variety of con-
tracts. In addition, to further increase the computational efficiency we
combine LSIS with stratified sampling [11]. The resulting variance reduc-
tion strategy is shown to be quite effective in a variety of cases, providing
computational speed-ups of up to two order of magnitude.

In the following Section, we begin by discussing the simulation set-
ting to which we apply the LSIS strategy. Then in Section 3 we review the
main ideas behind Importance Sampling, and the principal approaches
proposed in the financial literature. The rationale of LSIS is discussed in
Section 4 together with the essential implementation details, and in
Section 5 we illustrate how to combine LSIS with stratified sampling.
Sections 6 and 7 discuss the Libor Market Model setting, and present the
numerical results obtained with LSIS in this case. Finally, we draw our
conclusions in Section 8.

2. The Setting
Although the variance reduction technique we discuss in this paper can
be applied to a variety of financial problems, in the following we will focus
on pricing applications that involve the simulation of multi-dimensional
diffusions of the form
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V � V̄ = 1

Np

Np∑
i=1

G(Zi) Zi ∼ P(Z). (2.7)

In particular, the central limit theorem [14] ensures that, for big enough
samples, the values of the estimator V̄ are normally distributed around
the true value, and converge for Np → ∞ towards V namely

V � 1

Np

Np∑
i=1

G(Zi) ± �√
Np

, (2.8)

where �2 = EP [G(x)2] − EP [G(x)]2 is the variance of the estimator and can
be similarly approximated by

�2 � 1

Np

Np∑
i=1

(G(Zi) − V̄)2. (2.9)

Although Eq. (2.8) ensures the convergence of the Monte Carlo estimator to
the expectation value (2.4), its practical utility depends on the magnitude of
the variance, �2. Indeed, the square root convergence in (2.8), implies that
the number of replications Npthat are (asymptotically) necessary to achieve
a given level of accuracy is proportional to the variance of the estimatorb .

Roughly speaking, such quantity is relatively small whenever the function
G(Z) is approximately constant over the region of values of Z that is repre-
sented the most among the random samples, i.e., the region that contains
most of the probability mass of P(Z). This is generally not the case for most
of the pricing problems encountered in practice, and the calculation of 
accurate estimates of the expectation value (2.4) may require large sample
sizes Np,thus becoming computationally demanding.

3. Importance Sampling
The key observation underlying Importance Sampling is that the choice of
extracting the random variable Z according to the probability distribution
P(Z) in order to sample stochastically Eq. (2.4), although natural, is by no
means the only possible one. Indeed, the Monte Carlo integration can be
performed by sampling an arbitrary probability distribution P̃(Z) provided
that the integral is suitably reweighed. In fact, using the identity

∫
dZ G(Z) P(Z) =

∫
dZ

G(Z)P(Z)

P̃(Z)
P̃(Z), (3.1)

an alternative estimator of the expectation value (2.4) is readily found as

V � Ṽ = 1

Np

Np∑
i=1

W (Zi)G(Zi) Zi ∼ P̃(Z), (3.2)

with the weight function given by W (Z) = P(Z)/P̃(Z). The variance of the
new Monte Carlo estimator reads

�̃2 =
∫

dZ (W (Z) G(Z) − V)2 P̃(Z) (3.3)

and critically depends on the choice of the sampling probability distribution
P̃(Z). For non-negative functions G(Z), the optimal choice of P̃(Z) is the one
for which �̃ vanishes, namely:

Popt (Z) = 1

V
G(Z)P(Z). (3.4)

In fact, the Monte Carlo estimator corresponding to such optimal sampling
distribution reads

Ṽ � 1

Np

Np∑
i=1

W (Zi)G(Zi) = 1

Np

Np∑
i=1

V, (3.5)

leading to a constant value V on each Monte Carlo replication, and 
resulting therefore in zero variancec. Unfortunately, such a choice is not
really viable as the normalization constant, V, is the expectation value
(2.4) we want to calculate in the first place. Nevertheless, this observation
provides the useful indication that the sampling density P̃(Z),modulus a
normalization, should be as close as possible to the product of the payout
G(Z) and the original multi-variate Gaussian distribution (2.5).

In this respect, Importance Sampling strategies generally choose a
family of trial probability densities, P̃θ (Z) dash depending on a set of
Nθ real parameters θ = (θ1, θ2, . . . , θNθ

)dash and aim at determining the
one that minimize the variance of the estimator (3.3) within the class. In
particular, Importance Sampling methods in security pricing generally
try to guide the sampled paths towards the most important regions of
the configuration space (i.e., where the contribution of the integrand is
the largest), by means of a change of the drift terms of the process (2.1) or
(2.3). The corresponding trial probability density reads

P̃µ̃(Z) = (2π)−d/2e−(Z−µ̃)2 /2, (3.6)

where µ̃ is a d-dimensional vector, and the weight function, as also
expected from the Girsanov theorem [15], is

Wµ̃(Z) = exp[−µ̃ · Z + µ̃2/2]. (3.7)

A variety of approaches for the determination of the drift vector µ̃
minimizing the variance of the estimator (3.3) has been recently proposed
in the literature [21,7,8,18,19,1]. These can be roughly classified into two
families depending on the strategy adopted.

The first strategy, common to the so-called adaptive Monte Carlo
methods, is based on a stochastic minimization of the variance. Such
minimization differs in details in the various methods but always 
involves an iterative procedure, to be performed in a preliminary Monte
Carlo simulation.

In particular, Su and Fu [18,19], building upon previous work by
Vazquez-Abad and Dufresne [21], used a gradient-based stochastic ap-
proximation, dubbed infinitesimal perturbation analysis, in order to es-
timate the optimal uniform shift of the drift for the diffusion (2.3),
minimizing the variance of the estimator (3.3). In the notation of this
Section, this translates in working with a trial density of the form (3.6)
where the drift vector µ̃ has components all equal to a single optimiza-
tion parameter. The improvement of this method with respect to the
one of Ref. [21], is that the minimization is carried out under the origi-
nal probability measure, while in the latter the minimization was for-
mulated under the trial probability measure. As a result, the stochastic
minimization applies also for non differentiable payout, thus making
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the approach more general. The application of this technique to partial
average Asian options in a Black-Scholes market, and to Caplets under
the Cox-Ingersoll-Ross model provides significative variance reductions
[18,19].

Along similar ideas, Arouna [1] has recently proposed a different
stochastic optimization methods for the determination of the optimal
sampling density (3.6). Here, in contrast to the previous approach, all
the components of the drift vector are independently optimized. The
method relies on a truncated version of the Robbins-Monro algorithm
that is shown to converge asymptotically to the optimal drift, and to
provide an effective variance reduction in a variety of cases. However,
as remarked by the same author, a critical aspect of the practical 
implementation of the Robbins-Monro algorithm is that it depends on
the size of the iterative step. Hence, a particular care needs to be taken
in order for the algorithm to be efficientd .

On the other hand, the alternative strategy for the optimization of
the trial density (3.6), proposed by Glasserman, Heidelberger, and
Shahabuddin [7], relies on a saddle point approximation to minimize
the variance of the estimator (3.3), or equivalently of its second moment
(in the original measure)

m2(µ̃) =
∫

dZ Wµ̃(Z)G(Z)2P(Z). (3.8)

In fact, if the payout function G(Z) is positive definite, by defining
F(Z) = log G(Z) one can approximate Eq. (3.8) with the zero-order saddle
point expansion

(2π)−d/2

∫
dZ exp[2F(Z) − µ̃ · Z + µ̃2/2 − Z2/2]

� C exp[max
Z

(2F(Z) − µ̃ · Z + µ̃2/2 − Z2/2)],

where C is a constant. As a result, within this approximation, the problem
of determining the optimal change of drift boils down to finding the vector
µ such that

max
Z

(2F(Z) − µ̃ · Z + µ̃2/2 − Z2/2) (3.9)

is minimum. It is easy to show that this is obtained by choosing µ̃∗ = Z∗

where Z∗ is the point that solves the optimization problem

max(F(Z) − Z2/2), (3.10)

or equivalently, for which the payout times the original distribution,
G(Z)P(Z), is maximum, i.e., Z∗ corresponds to the maximum of the optimal
sampling density, Eq. (3.4). The simplest interpretation of the saddle point
approach is therefore that it approximates the zero variance distribution
by means of a normal density with the same mode and variance.

This approach has been recently generalized to the continuous time
in the Black-Scholes framework in a recent work by Guasoni and
Robertson [10]. This formulation allows one to express the problem of
the determination of the optimal drift in terms of a one-dimensional
variational problem, and the solution of a Euler Lagrange equation.

The saddle point approach can be expected to be particularly effective
in reducing the variance of the Monte Carlo estimator whenever the log

payout function F(Z) is close to be linear in the portion of the configuration
space where most of the probability mass of P(Z) lays. However, whenever
the optimal sampling probability (3.4) cannot be accurately represented by
a single Gaussian with the same mode and variance, the saddle point 
approximation is less beneficial. In particular, this approach turns out to
be less effective whenever the structure of the payout function G(Z) is such
that the optimal sampling distribution (3.4) has a width which is very dif-
ferent from the one of the original distribution, or is multi-modal.

In the following Section we describe an alternative least squares
strategy that is straightforward to implement and flexible enough to be
applied in a generic Monte Carlo setting. Indeed, the Least Squares
Importance Sampling (LSIS) is not limited to the determination of the
optimal change of drift in a Gaussian model. Instead, it can be applied
to any Monte Carlo simulation provided that a reasonable guess of the
optimal sampling density is available. For this reason, in the next
Section we will momentarily leave the Gaussian framework, and we
will describe the rationale of LSIS in a more general setting.

4. Least Squares Importance Sampling
A practical approach to the search of an effective Importance Sampling
distribution can be formulated in terms of a non-linear optimization
problem. To this purpose, let us consider the family of trial probability
densities, P̃θ (Z). The variance of the estimator corresponding to P̃θ (Z),

Eq. (3.3), can be written in terms of the original probability distribution
P(Z) as

�̃2
θ = EP [Wθ (Z)G2(Z)] − EP [G(Z)]2, (4.1)

with Wθ (Z) = P(Z)/P̃θ (Z). Hence, the optimal Importance Sampling distri-
bution within the family P̃θ (Z) is the one for which the latter quantity, or
equivalently the second moment (3.8) or

EP [Wθ (Z)G2(Z)], (4.2)

is minimum. The crucial observation is that the Monte Carlo estimator of
this quantity,

m2(θ ) � 1

N′
p

N ′
p∑

i=1

(Wθ (Zi)
1/2G(Zi))

2 Zi ∼ P(Z), (4.3)

can be interpreted as a non-linear least squares fit of a set of N′
p data

points (xi, yi) with a function y = fθ (x) parameterized by θ, with the cor-
respondence yi → 0, xi → Zi, and fθ (x) → Wθ (Z)1/2G(Z). The latter is a
standard problem of statistical analysis that can be tackled with a variety
of robust and easily accessible numerical algorithms, as the so-called
Levenberg-Marquardt method [16].

Alternatively, to improve the numerical stability of the least-squares
procedure, it is convenient in some situations to minimize, instead of
(4.2), the pseudo-variance

S2(θ ) = EP [(Wθ (Z)1/2G(Z) − VT)
2]

� 1

N′
p

N ′
p∑

i=1

(Wθ (Zi)
1/2G(Zi) − VT)

2
(4.4)

^
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where the constant VT is a guess of the option value. Indeed, the minimization
of (4.4) is equivalent to the one of the real variance of the estimator (4.1) as

S2(θ ) = �̃2
θ + (EP [G(Z)] − VT)

2. (4.5)

The algorithm for the determination of the optimal sampling distribu-
tion within a certain trial family can be therefore summarized as it follows:

(1) Generate a suitable number N′
p of replications of the state variables Z

according to the original probability distribution P(Z);
(2) Choose a trial probability distribution P̃θ (Z), and an initial value of

the vector of parameters θ ;
(3) Set xi → Zi, fθ (x) → Wθ (Z)1/2G(Z) and yi → 0(resp.yi → VT) and call a

least squares fitter, say LSQ [x, y, fθ (X), θ ], providing the optimal
θ = θ ∗ by minimizing the second moment of the estimator m2(θ ),

Eq. (4.3) [resp. S2(θ ), Eq. (4.4)].

Once the optimal parameters θ ∗ have been determined through the
least squares algorithm, one can perform an ordinary Monte Carlo simu-
lation by sampling the probability distribution P̃θ∗(Z), and calculating 
expectation values according to Eq. (3.2).

What makes LSIS a practical strategy is that just a relatively small num-
ber of replications N′

p 
 Np is usually required to determine the optimal 
parameters θ̃ ∗. This is due to the fact that the configurations over which the
optimization is performed are fixed. As a result of this form of correlated
sampling [20], the difference in the m2(θ )’s for two sets of values of the 
parameters being optimized is much more accurately determined than the
values of the m2(θ )’s themselves. This rather surprising feature is rooted in
the fact that the minimization of Eq. (4.3) as a means to optimize the trial
density, P̃θ (Z), can be justified in terms of a genuine maximum likelihood
criteria [4], and it is therefore independent on how accurately m2(θ )

approximates the quantity (4.2). As a result, the overhead associated with
the optimization of the trial density is generally fairly limited, thus making
LSIS a practical approach for variance reduction.

In a companion paper [5] we have demonstrated the effectiveness of
LSIS by applying it to a variety of test cases. In particular, we have
shown that LSIS provides variance reductions comparable or superior
to those of the Importance Sampling methods most recently proposed
in the financial literature [7,18,19,1]. As a simple example, for instance,
below we briefly review the results obtained for standard Call and Put
options in a Black-Scholes setting. In this case the payout function reads
as in Eq. (2.6) (for the call), and the sampling density P(Z) is a univariate
standard normal distribution.

As discussed above, Importance Sampling techniques seek a sampling
probability density P̃θ (Z) as close as possible to the optimal sampling 
distribution, Eq. (3.4) (see Figure 1). The simplest choice for P̃θ (Z), in this
setting, is a Gaussian distribution of the form (3.6) (with d = 1), so that
the only parameter θ to optimize is the drift µ̃. We found that the least
squares fitter was able to determine successfully the optimal µ̃ with as
little as N′

p � 50 Monte Carlo replications.
In Tables 1 and 2 we compare the results obtained with LSIS with the

ones obtained by means of the Robbins Monro (RM) adaptive Monte Carlo
(as quoted in Ref. [1]), and the saddle point approach of GHS [7]. Here, as
an indicator of the efficiency gains introduced by the different strategies
of Importance Sampling, we have defined the variance ratio as

VR =
(

σ (Crude MC)

σ (IS)

)2

(4.6)

where the numerator and denominator are the statistical errors (for the
same number of Monte Carlo paths) of the Crude and the Importance
Sampling estimators, respectively.

We found that the different methods produce a significative and
comparable variance reduction. Intuitively, the change of drift is more
effective for low volatility, and deep in and out of the money options
(see also the discussion in the Introduction). In this case, the LSIS and
GHS optimized trial distributions P̃µ̄(Z) are very similar as shown Fig. 1.
This could be expected as, in this case, the optimal Importance
Sampling distribution (3.4) can be effectively approximated by a
Gaussian with the same mode and variance, so that the GHS approach
produces accurate results.

However, the LSIS method is not limited to Importance Sampling
strategies based on a pure change of drift, and one can easily introduce
additional optimization parameters in the trial density. For instance, in
this example it makes sense to introduce the sampling volatility, σ̃ ,

P̃µ̃,σ̃ (Z) = (2πσ̃ 2)−1/2e−(Z−µ̃)2 /2σ̃ 2

. (4.7)

As illustrated in Fig. 1, by adjusting both µ̃ and µ̃, one obtains a trial
density closer to the optimal one. This corresponds to an additional
variance reduction up to over one order of magnitude, as shown in
Tables 1 and 2.

5. Stratified Sampling
In a diffusive setting, LSIS can be naturally combined with stratified sam-
pling [11] in order to achieve further variance reductions. In this Section

Fig. 1. Sampling probability density functions for a European Call option
(2.6) with T = 1, r = 0.05,,  σ = 0.3, X0 = K = 50 as obtained with LSIS 
[optimizing just the drift, LSIS(µ̃), and both the drift and the volatility,
LSIS(µ̃, σ̃ )], and the saddle point approximation of Ref. [7] (GHS). On this
scale the results for LSIS(µ̃) and GHS are indistinguishable. The original (2.5)
and the optimal (3.4) sampling densities are also shown for comparison.
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we illustrate how. We begin by reviewing the basic ideas underlying
Stratification following Refs. [7,6].

Stratification is a technique that allows one to draw samples from a
specified distribution in a more regular pattern thus reducing the variance.
This is achieved by ensuring that the fraction of samples which falls in dif-
ferent subsets, or strata, of the domain of the random variable matches the
theoretical probability of each subset. For example, in order to perform a
stratified sampling of a single standard normal variable one can divide the
real axis into M strata, such that the probability of the random variable to
fall in any of them is 1/M. This can be done easily by first dividing the unit
interval (0, 1) into M segments of length 1/M, and sampling uniformly from
each of them. Then, each of the sampled uniform is mapped into a standard
Gaussian by means of the inverse cumulative normal distribution. The 
resulting set of M variates will contain exactly one variable for each of the M
strata of the real axis, and constitute therefore a stratified sample of the
standard normal distribution. This simple algorithm can be therefore 
summarized as it follows:

(1) Draw M random variables, say u1, . . . , uM , uniformly distributed in (0, 1).
(2) Define a new set of M random variables

v(i) = i − 1

M
+ u(i)

M
,

with i = 1, . . . , M, i.e., such that the i-th variable is uniformly dis-
tributed in the interval (i − 1/M, i/M).

(3) Set

X(i) = �−1(v(i)),

where � is the standard normal cumulative density function. The
variables (X(1), . . . , X(M)) constitute the sample of the standard normal
distribution, stratified into M strata.

Although this procedure can be generalized to multi-dimensional
normal variates, it becomes unpractical in high-dimension (d >∼ 5) for the
same reason for which estimating the integral (2.4) by numerical quadra-
ture becomes exponentially inefficient: if each dimension is divided into
M strata, their total number scales as Md. As a result, generating just one
point on each stratum requires a sample size at least this large, thus 
becoming prohibitive for the values of M >∼ 10 that generally make
Stratification effective in reducing the variance.

A feasible way of applying Stratification to the sampling of a multi-
variate normal distribution is to stratify only a specific one-dimensional
projection of the random variable Z ∼ N(0, Id). This is straightforward 
because, the projection of Z along a direction in R d represented by a unit
vector ξ, ξ · Z, is a standard normal variable that can be stratified using

TECHNICAL ARTICLE 1

σ K LSIS ( µ− ) LSIS (µ− , σ− ) RM GHS

0.1 30 104(1) 1700(100) 112(4) 100(1)
50 7.8(1) 15(1) 7.8(4) 7.8(1)
60 33.5(5) 84(5) 31(2) 33.5(5)

0.3 30 16.4(1) 51(1) 16.8(4) 14.8(2)
50 9.9(5) 27(1) 11(2) 9.9(1)
60 15.6(1) 35(1) 15.2(4) 14.2(1)

Table 1. Variance reductions (4.6) obtained with different Importance Sampling strategies. Comparison
between LSIS, the adaptive Robbins-Monro (RM) algorithm (as quoted in Ref. [1]), and the saddle point
approach of Ref. [7] (GSH): price of a European Call option on a lognormal asset (2.6) for different values
of the volatility σ, and of the strike price K. The parameters used are r = 0.05, X0 = 50, T = 1.0, and the
number of simulated paths is 1,000,000 for Crude MC, LSIS and GHS, 50,000 for RM. Results for LSIS
obtained by optimizing the drift only [LSIS(µ−)], and both the drift and the volatility [LSIS (µ− , σ− )] are
reported. The uncertainties are reported in parentheses

σ K LSIS ( µ− ) LSIS (µ− , σ− ) RM GHS

0.1 40 435(6) 571(9) 350(24) 435(6)
50 8.8(1) 25(2) 9.6(4) 9.1(1)
60 5.9(1) 17(1) 6.3(4) 5.9(1)

0.3 30 41(1) 69(2) 38(4) 40.8(5)
50 5.8(1) 16.5(5) 6.2(4) 5.8(1)
60 4.9(1) 13.9(2) 4.8(4) 4.4(1)

Table 2. Same as Table 1 for a European Put option
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the one-dimensional algorithm described above. In addition, it is also
easy to sample the vector Z conditional to a specific value of its projection
ξ · Z, as the conditional distribution (Z|ξ · Z = x) is itself normal and
given by N(xξ, Id − ξξ t). The resulting algorithm leading to the stratification
of Z along the direction ξ can be therefore summarized as it follows:

(1) Generate a stratified sample of X(1), . . . , X(M) of the standard normal
distribution as described above. Interpret X(i) as the i-th value of the
one-dimensional projection ξ · Z, of Z ∼ N(0, Id).

(2) Draw M independent d-dimensional Gaussian variates Y (i) from
N(0, Id).

(3) Set

Z(i) = ξX(i) + (Id − ξξ t)Y (i).

The resulting set (Z(1), . . . , Z(M)) constitutes a sample from N(0, Id) stratified
along the direction ξ into M strata.

Loosely speaking, the Stratification of a one-dimensional projection of a
multi-dimensional normal variate has nearly the same effect of replacing
the Monte Carlo integration with a numerical quadrature along the strati-
fied direction ξ, while still using Monte Carlo for the remaining ones.
Clearly, the choice of the direction ξ is critical for the Stratification to be 
effective in terms of variance reduction. This is likely to be the case if the
output is strongly correlated to the value of the projection ξ · Z.

As anticipated, the simplest possible strategy for Importance Sampling
in a Gaussian framework, is to look for an optimal change of drift, i.e. to
adopt the simple shifted Gaussian of Eq. (3.6) as trial probability density.
In this setting, as suggested by Glasserman and collaborators [7], a natural
choice for the direction of stratification is the optimal drift vector itself.
This can be rigorously justified if the payout is a function of a linear com-
bination of the Zi’s. However, in Refs. [7,8] and [5] it has been shown that
this choice works in practice more in general, turning out to be highly 
effective in a variety of cases. In this paper, we also follow this strategy,
and demonstrate its effectiveness for a variety of examples in the context
of the Libor Market Model.

6. The Libor Market Model Setting
In the remainder of this paper we will apply the LSIS strategy, reviewed
above, to the Libor Market Model of Brace, Gatarek and Musiela [3] for the
arbitrage-free evolution of the forward Libor rates. In order to introduce
this framework, we indicate with Ti, i = 1, . . . , M + 1, a set of M + 1 bond
maturities, with spacings h = Ti+1 − Ti, assumed constant for simplicity.
The Libor rate as seen at time t for the interval [Ti, Ti+1), Li(t), evolves 
according to the following stochastic differential equation

dLi(t)

Li(t)
= µi(L(t))dt + σi(t)

T dWt, 0 ≤ t ≤ Ti, i = 1, . . . , M, (6.1)

where W is a N-dimensional standard Brownian motion, L(t) is the
M-dimensional vector of Libor rates, and σi(t) the N-dimensional vector of
volatilities, both at time t. Here the drift term, as imposed by the arbitrage
free conditions, reads

µi(L(t)) =
i∑

j=η(t)

σ T
i σjhLj(t)

1 + hLj(t)
, (6.2)

where η(t) denotes the index of the bond maturity immediately following
time t, with Tη(t)−1 ≤ t < Tη(t).

Equation (6.1) can be simulated by applying a Euler discretization to
the logarithms of the forward rates, and by dividing each interval
[Ti, Ti+1) into ne steps of equal width, he = h/ne. This gives

Li(n + 1)

Li(n)
= exp[(µi(L(N)) − σi(n)||2/2)he + σ T

i (n)Z(n + 1)
√

he ], (6.3)

for i = η(nhe), . . . , . . . , M, and Li(n + 1) = Li(n) if i < η(nh). Here Z is a
N-dimensional vector of independent standard normal variables. Under the
discretized model (6.3), the problem of evaluating the price of a contract
written on a set of Libor rates is then formulated in the general form (2.4),
and LSIS can be straight-forwardly applied.

In the following we will present results using a trial probability density
involving displaced Gaussian multi-variate distributions of the form (3.6).
This choice requires in principle the optimization of a number of parame-
ters – the components of the drift vector µ̃ – proportional to the number of
Gaussian univariate Zi necessary for the propagation of the Libor rates in
the desired time horizon, namely d = M × N × ne. As the number of time
steps or the number of factors of the simulation increase, the complexity
of the optimization problem increases as well. Nevertheless, as suggested
in Ref. [8] and verified in the companion paper [5] for a variety of exam-
ples, one can significantly reduce the computation time associated with
the optimization stage by approximating the drift vector with a continu-
ous function parameterized by a small number of parameters. These are
in turn tuned by the least square algorithm in order to determine an 
approximate optimal drift vector. We have found that a particularly 
effective realization of this approach is to approximate the drift vector by
a piecewise linear function, parameterized by its values where it changes
slope (the so-called knot points). In particular, in the simulation of the
LMM we have found that by using a very limited number of knot points
for each random factor (say for 1 to 5) one is able to achieve very effective
variance reductions through LSIS and LSIS plus Stratification. Hence the
simulation of the LMM required the optimization of a very small number
of parameters (form 3 to 15, for N = 3) thus making the overhead associ-
ated with the presimulation stage rather limited. More precisely, we
found that a few hundred Monte Carlo configurations and 10-20 itera-
tions of the least squares fitter, were typically enough to determine the
optimal drift vector. In addition, such vector generally changes continu-
ously with the simulation parameters. As a result, an even faster conver-
gence in the iterative procedure can be obtained by starting the
pre-simulation from a drift vector optimized for a case with a similar set
of parameters.

7. Numerical Results
The numerical results we present in this Section are based on the evolution
of (6.3) in a three-factor (N = 3) model with h = 1/4 (a quarter of a year),
and ne = 3. Following Ref. [9], to keep things simple we take the volatilities
to be functions of time to maturity
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σi(t) = σi−η(t)+1(0), (7.1)

with

σ
j
i (0) = σ0(1 + αj)(1 + βi), (7.2)

j = 1, . . . , 3, α = β = 0.01, and σ0 = 0.2. As initial Libor curve we take
instead

Li(0) = l0(1 + βi), (7.3)

with l0 = 5%.
As a first example we consider a Caplet for the interval [Tm, Tm+1)

struck at K,

Ch(TM) =
(

�m
i=0

1

1 + hLi(Ti)

)
h(Lm(Tm) − K)+ . (7.4)

Table 3 displays the estimated variance ratios obtained with LSIS, and
the combination of LSIS and Stratification (LSIS+) introduced in Section
5 for a variety of maturities, and strike prices that range from in the
money to out of the money. Here the results are all obtained using (3.6)
as trial probability density, and by parameterizing the change of drift of
each factor with a single parameter or knot point, corresponding to a
rigid shift. We have verified that increasing the number of knots does
not provide further sizable benefits in this case. As shown in Table 3,
LSIS provides remarkable variance reductions, corresponding to a saving
of roughly one order of magnitude in computational time, consistently

across maturities. For fixed maturity, as expected, LSIS is more effective
for out of the money strikes since in these cases the fraction of paths 
expiring worthless is more significant. These paths clearly provide little
information, and tend to increase the variance of the sample. Changing
the drift increases the fraction of paths which end up in the money thus
making the sample more homogeneous. Conversely, as the maturity 
increases, the variance reduction provided by LSIS decreases as the outturn
distributions of the Libor rates become more delocalized, and the change
of drift strategy becomes less effective.

The combination of LSIS and Stratification provides for Caplets a
tremendous variance reduction of up to two order of magnitude (see
Table 3). However, the effectiveness of LSIS+ decreases sharply with 
maturity. Nevertheless, for the examples considered, it still gives around
a factor of 40 in variance reduction for a 7 year maturity, thus resulting
in extensive savings in computational time also for fairly long expiries.

Although important instruments for calibration, Caplets constitute
an easy test ground for LSIS and LSIS+ as they are mostly sensitive to
the single Libor rate determining the final payment. A more articulated
example on which to assess the efficacy of LSIS are interest rate Caps.
We consider contracts with first payment Tn and last payment TM , and
tenor h

Caph(Tn, TM) =
M∑

l=n

Ch(Tl). (7.5)

The results obtained for a variety of maturities and strike prices are
shown in Table 4. In this case we have verified that Nk = 3 knot points
provided the bulk of the variance reduction for the trial density function
(3.6). The efficiency gains produced by LSIS, although slightly smaller

TECHNICAL ARTICLE 1

Tm (years) K Nk LSIS LSIS+
1.0 0.04 1 11.4(1) 1349(1)
1.0 0.055 1 13.3(2) 2300(2)
1.0 0.07 1 20.2(1) 4126(4)
2.5 0.04 1 14.0(1) 1189(1)
2.5 0.055 1 15.5(1) 897(1)
2.5 0.07 1 18.1(1) 1831(1)
5.0 0.040 1 12.7(1) 235.2(5)
5.0 0.060 1 12.5(1) 237.0(5)
5.0 0.080 1 14.5(1) 193.3(4)
7.0 0.04 1 7.9(3) 40.0(1)
7.0 0.055 1 8.5(4) 43.7(1)
7.0 0.07 1 8.5(4) 40(1)

Table 3: Variance reductions (4.6) obtained with
LSIS and LSIS plus Stratification (LSIS+) for Caplets,
Eq. (7.4), in a three factor Libor Market Model, for
different maturities TM, and strike prices K. Nk is the
number of knots per factor (see text). The number
of simulated paths is 200,000. The uncertainties on
the variance reductions are reported in parentheses

Tm (years) K Nk LSIS LSIS+
1.0 0.04 3 10.6(5) 37.2(8)
1.0 0.055 3 9.7(3) 19.8(5)
1.0 0.07 3 13.6(5) 21.6(6)
2.5 0.04 3 16.2(5) 40.3(7)
2.5 0.055 3 12.0(4) 33.8(7)
2.5 0.07 3 15.7(5) 47.3(8)
5.0 0.04 3 14.9(5) 43.7(9)
5.0 0.055 3 14.5(6) 46.7(9)
5.0 0.07 3 15.6(6) 55(1)
7.0 0.04 3 13.0(6) 42.6(8)
7.0 0.055 3 12.2(5) 45.1(9)
7.0 0.07 3 12.6(4) 55(1)

Table 4: Variance reductions obtained with LSIS and
LSIS plus Stratification (LSIS+) for Caps Eq. (7.5) in a
three factor Libor Market Model, for Tn = 0.25 (years),
different final maturities TM, and strike prices K. Nk is
the number of knots per factor (see text). The number
of simulated paths is 200,000. The uncertainties on
the variance reductions are reported in parentheses
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than in the case of a single Caplet, are consistently around 10–15 for all
the maturities considered. As expected, LSIS+ is not able to provide the
massive variance reductions observed for Caps. Nonetheless, for the cases
considered, it provides a further reduction of the variance with respect
to LSIS of a sizable factor ranging from 2 to 4.

LSIS and LSIS+ result in remarkable computational savings also for
Swaptions. Here we have considered contracts with expiry Tn to enter in a
swap with payments dates Tn+1, . . . , TM+1, with the holder of the option
paying a fixed rate K

V(Tn) =
M+1∑

i=n+1

B(Tn, Ti)h(Sn(Tn) − K)+, (7.6)

where B(Tn, Ti) is the price at time Tn of a bond maturing at time Ti

B(Tn, Ti) = �i−1
l=n

1

1 + hLl(Tl)
, (7.7)

and the swap rate reads

Sn(Tn) = 1 − B(Tn, TM+1)

h�M=1
l=n+1B(Tn, Tl)

. (7.8)

The results are shown in 5 and indicate that LSIS provides variance 
reductions in the range 7 ÷ 20 and LSIS+ further increases the computa-
tional efficiency by up to one order of magnitude.

As a final example – illustrating for a simple case the flexibility of
LSIS – we consider the combination of a long Caplet and Flooret in a
Straddle contract

Sth(Tm) =
(

�m
i=0

1

1 + hLi(Ti)

)
h|Lm(Tm) − K|. (7.9)

In this case, the optimal sampling distribution (see Sec.3), proportional
to the product of the payout and the Gaussian sampling distribution (2.5),
has two well separated maxima because of the modulus in Eq. (7.9). As a 
result, a single mode trial probability density (3.6) provides limited vari-
ance reductions, especially for strikes at the money, where the relative 
importance of the two maxima is similar (see Table 6). However, the LSIS is
not limited to a Gaussian trial density and one can use this flexibility to
utilize a more accurate guess of the optimal sampling distribution. In 
particular, a better ansatz for the optimal density is represented by a 
bi-modal trial density of the form

P̃(Z) = (2π)−d/2
[
wae−(Z−µa )

2 /2 + wbe−(Z−µb )
2 /2

]
, (7.10)

where wa + wb = 1 that can be optimized over µa, µb, and wa. The simulation
of a density of this form is straightforward as it simply implies choosing one of
the two Gaussian components in (7.10) on each Monte Carlo step, and sample
a configuration Zi according to it. This can be done by extracting an auxiliary
uniform random number ξ ∈ [0, 1], and sampling Zi according to the first
Gaussian component if ξ < wa, and according to the second otherwise. 

Tn (years) TM+1 K Nk LSIS LSIS+
0.5 1.5 0.04 3 6.8(3) 35.2(8)
0.5 1.5 0.055 3 10.5(4) 143(2)
0.5 1.5 0.07 3 21.2(6) 209(2)
0.5 2.5 0.04 3 7.0(3) 41.9(9)
0.5 2.5 0.055 3 9.8(3) 149(2)
0.5 2.5 0.07 3 18.6(5) 427(2)
0.5 5.5 0.04 3 6.8(3) 50(1)
0.5 5.5 0.055 3 8.5(3) 106(1)
0.5 5.5 0.07 3 12.0(4) 148(1)
1.0 6.0 0.04 3 8.0(4) 144(2)
1.0 6.0 0.055 3 8.6(3) 165(2)
1.0 6.0 0.07 3 12.7(4) 654(3)
2.0 7.0 0.04 3 9.2(3) 70(1)
2.0 7.0 0.055 3 9.7(3) 139(1)
2.0 7.0 0.09 3 13.9(4) 140(1)
5.0 10.0 0.04 5 7.3(4) 76(1)
5.0 10.0 0.055 5 7.4(3) 72(2)
5.0 10.0 0.09 5 7.5(4) 197(2)

Table 5. Variance reduction obtained with LSIS and LSIS plus Stratification (LSIS+) for Swaptions Eq. (7.6)
in a three factor Libor Market Model. Tn is the option expiry and TM+1 is the final payment date of the un-
derlying swap. K is the strike price. Nk is the number of knots per factor (see text). The number of simulated
paths is 200,000. The uncertainties on the variance reductions are reported in parentheses.
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As shown in Table 6, using this trial density, LSIS improves significantly the
computational efficiency also for Straddle contracts.

8. Conclusions
In this paper we have described the application of the recently introduced
Least Squares Importance Sampling (LSIS) [5] to the simulation of Libor
Market Models. Such variance reduction technique allows one to automat-
ically optimize the sampling distribution within a chosen trial class by
means of a presimulation algorithm of straightforward implementation.

What makes the approach practical in a financial context is that the
overhead associated with the least squares optimization of the trial density
is generally rather limited especially after reducing the dimensionality of
the problem by means of a careful parametrization.

With several numerical examples we have shown that LSIS can be 
extremely effective in reducing the variance per sample of the simula-
tion, thus resulting in remarkable speed-ups. Moreover, when used with
Gaussian trial probability densities, LSIS can be naturally combined with
Stratification thus providing further efficiency gains that can result in
computational savings of orders of magnitude.

The efficacy of any Importance Sampling strategy is much dependent
on how effectively the trial density function is able to reweigh the different
regions of the sampled space in order to reduce the statistical fluctuations
of the accumulated observables. These regions depends on both the model
simulated, and the structure of the payout being priced. In this respect LSIS,
when compared with previously methods, offers additional potential lee-
way as it is not limited to Gaussian trial densities. This becomes important
when the structure of the optimal density is particularly complex e.g., with
multi-modal features, or complicated correlation structures. In this paper
we have illustrated this point with a simple multi-modal example. Further
work is currently in progress in order to introduce more flexible probability
distributions as trial densities.

TECHNICAL ARTICLE 1

Tm (years) K Nk LSIS LSIS(MM)

1.0 0.04 1 2.8(1) 5.8(1)
1.0 0.05 1 1.3(1) 5.3(1)
1.0 0.06 1 1.0(1) 3.9(1)
1.0 0.07 1 1.1(1) 3.4(1)
5.0 0.04 1 2.8(1) 8.7(1)
5.0 0.05 1 1.9(1) 6.5(1)
5.0 0.06 1 1.5(1) 4.9(1)
5.0 0.07 1 1.2(1) 4.0(1)

Table 6: Variance reduction obtained with LSIS for a
Straddle Eq. (7.9) in a three factor Libor Market
Model, for different maturities Tm, and strike prices
K. Nk is the number of knots per factor (see text).
Results are shown using Eq. (3.6) [LSIS] and 
Eq. (7.10) [LSIS (MM)] as trial densities. The number
of simulated paths is 200,000. The uncertainties on
the variance reductions are reported in parentheses
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aThe use of other discretization schemes does not alter the present discussion.
b In particular, the Monte Carlo integration becomes unfeasible if the variance of the
estimator diverges, giving rise to the so-called sign-problem instability. Although this
problem is the crux of Monte Carlo simulations in several branches of the Physical
Sciences, see, e.g., S. Sorella and L. Capriotti, Physical Review B 6611, 2599 (2000),
this issue does not usually affect financial contexts.

cIt is possible to show [16] that, when G(Z) does not have a definite sign, the optimal
sampling density has the similar form Popt = |G(Z)|P(Z)/V, although in this case the
resulting variance is not zero.

dB. Arouna, private communication.

[1] B. Arouna. Journal of Computational Finance, 7:1245–1255, 2003.
[2] P. Boyle, M. Broadie, and P. Glasserman. Journal of Economic Dynamics and Control,

21:1257–1321, 1997.
[3] A. Brace, D. Gatarek, and M. Musiela. Mathematical Finance, 7:127–155, 1997.
[4] D. Bressanini, G. Morosi, and M. Mella. Journal Chemical Physics, 116:5345–5350, 2002.
[5] L. Capriotti. Least Squares Importance Sampling for Monte Carlo Security Pricing.

preprint, 2006.
[6] P. Glasserman. Monte Carlo Methods in Financial Engineering. Springer, New York, 2004.
[7] P. Glasserman, P. Heidelberger, and P. Shahabuddin. Mathematical Finance,

9:117–152, 1999.
[8] P. Glasserman, P. Heidelberger, and P. Shahabuddin. Journal of Derivatives, 7:32–50,

1999.
[9] P. Glasserman and X. Zhao. Journal of Computational Finance, 3:5–39, 1999.
[10] P. Guasoni and S. Robertson. Optimal Importance Sampling with Explicit Formulas in

Continuous Time. preprint, 2006.
[11] J.M. Hammersley and D.C. Handscomb. Monte Carlo Methods. Methuen, London,

1964.
[12] J. Harrison and D. Kreps. Journal of Economic Theory, 20:381–408, 1979.
[13] J. C. Hull. Options, Futures and Other Derivatives. Prentice Hall, New Jersey, 2002.
[14] O. Kallenberg. Foundations of Modern Probability. Springer, New York, 1997.
[15] M. Musiela and M. Rutkowski. Martingale Methods in Financial Modelling. Springer,

New York, 2002.
[16] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical recipes in

C++ : the art of scientific computing. Cambridge University Press, Cambridge, 2002.
[17] R. Reider. Working paper, 1993.
[18] Y. Su and M. C. Fu. In J.A. Joines, R.R Barton, K. Kang, and P.A. Fishwick, editors,

Proceedings of 2000 Winter Simulation Conference, pages 587–596, Piscataway NJ,
2000. IEEE Press.

[19] Y. Su and M. C. Fu. Journal of Computational Finance, 5:27–50, 2002.
[20] C. J. Umrigar, K. G. Wilson, and W. Wilkins. Physical Review Letters, 60:1719–1722,

1988.
[21] F. Vazquez-Abad and D. Dufresne. In D.J. Medeiros, E.F. Watson, J.S. Carson, and

M.S. Manivann, editors, Proceedings of 1998 Winter Simulation Conference, pages
1493–1500, Washington DC, 1998. IEEE Press.




