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We show how algorithmic differentiation can be used to efficiently implement the
pathwise derivative method for the calculation of option sensitivities using Monte
Carlo simulations. The main practical difficulty of the pathwise derivative method
is that it requires the differentiation of the payout function. For the type of struc-
tured options for which Monte Carlo simulations are usually employed, these
derivatives are typically cumbersome to calculate analytically, and too time con-
suming to evaluate with standard finite-difference approaches. In this paper we
address this problem and show how algorithmic differentiation can be employed
to calculate these derivatives very efficiently and with machine-precision accu-
racy. We illustrate the basic workings of this computational technique by means of
simple examples, and we demonstrate with several numerical tests how the path-
wise derivative method combined with algorithmic differentiation – especially in
the adjoint mode – can provide speed-ups of several orders of magnitude with
respect to standard methods.

1 INTRODUCTION

Monte Carlo simulations are becoming the main tool in the financial services industry
for pricing and hedging complex derivatives securities. In fact, as a result of the ever-
increasing level of sophistication of the financial markets, a considerable fraction of
the pricing models employed by investment firms is too complex to be treated by ana-
lytic or deterministic numerical methods. For these models, Monte Carlo simulation
is the only computationally feasible pricing technique.
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The main drawback of Monte Carlo simulations is that they are generally computa-
tionally expensive. These efficiency issues become even more dramatic when Monte
Carlo simulations are used for the calculation of the “Greeks”, or price sensitivities,
which are necessary to hedge the financial risk associated with a derivative security.
Indeed, the standard method for the calculation of the price sensitivities, also known
as “bumping”, involves perturbing the underlying model parameters in turn, repeat-
ing the simulation and forming finite-difference approximations, thus resulting in a
computational burden increasing linearly with the number of sensitivities computed.
This becomes very significant when the models employed depend on a large number
of parameters, as is typically the case for the sophisticated models for which Monte
Carlo simulations are used in practice.

Alternative methods for the calculation of price sensitivities have been proposed in
the literature (for a review see, for example, Glasserman (2004)). Among these, the
pathwise derivative method (Broadie and Glasserman (1996); Chen and Fu (2002);
and Glasserman (2004)) provides unbiased estimates at a computational cost that
for simple problems is generally smaller than that of bumping. The main limitation
of the technique is that it involves the differentiation of the payout function. These
derivatives are usually cumbersome to evaluate analytically, thus making the prac-
tical implementation of the pathwise derivative method problematic. Of course, the
payout derivatives can always be approximated by finite-difference estimators. How-
ever, this involves multiple evaluations of the payout function, and it is in general
computationally expensive.

A more efficient implementation of the pathwise derivative method was proposed in
a remarkable paper by Giles and Glasserman (2006) for the LIBOR market model and
European-style payouts, and was recently generalized for simple Bermudan options
by Leclerc et al (2009). The main advantage of this method is that it allows the calcu-
lation of the price sensitivities at a greatly reduced price with respect to the standard
implementation. One drawback, as in the standard pathwise derivative method, is that
it involves the calculation of the derivatives of the payout function with respect to the
value of the underlying market factors.

In this paper we illustrate how the problem of the efficient calculation of the deriva-
tives of the payout can be overcome by using algorithmic differentiation (AD) (see
Griewank (2000)). Indeed, AD makes possible the automatic generation of efficient
coding implementing the derivatives of the payout function. In particular, the tangent
(or forward) mode of AD is well suited for highly vectorized payouts depending on a
small number of observations of a limited number of underlying assets. This situation
arises, for instance, when the same payout function with different parameters is used
to price several trades depending on the same (small) set of market observations, and
the sensitivities associated with each trade are required. On the other hand, the adjoint

The Journal of Computational Finance Volume 14/Number 3, Spring 2011



Fast Greeks by algorithmic differentiation 5

(or backward) mode is most efficient in the more common situations where the num-
ber of observations of the underlying assets is larger than the number of securities
simultaneously evaluated in the payout, or when interest lies in the aggregated risk of
a portfolio. In these cases, the implementation of the pathwise derivative method by
means of the adjoint mode of AD – adjoint algorithmic differentiation (AAD) – can
provide speed-ups of several orders of magnitude with respect to standard methods.

In companion papers (Capriotti and Giles (2010) and Capriotti and Giles (2011)),
we show howAAD can be used to efficiently implement not only the derivatives of the
payout function but also the so-called tangent state vector (see the next section). This
allows us to make the ideas proposed in Giles and Glasserman (2006) completely
general and applicable to virtually any derivative or model commonly used in the
financial industry.1

The remainder of this paper is organized as follows. In the next section, we set the
notation and briefly review the pathwise derivative method. The basic workings ofAD
are then introduced in Section 3 by means of simple examples. In Section 4 we discuss
in detail how AD can be used to generate efficient coding for the calculation of the
derivatives of the payout function. Here we present numerical results comparing the
efficiency of the tangent and adjoint modes as a function of the number of derivatives
computed. From this discussion it will be clear that, in most circumstances, the adjoint
mode is the one that is best suited when calculating the risk of complex derivatives.
The computational efficiency of the pathwise derivative method with adjoint payouts
is discussed and tested with several numerical examples in Section 5. We draw the
conclusions of this paper in Section 6.

2 THE PATHWISE DERIVATIVE METHOD

Option pricing problems can typically be formulated in terms of the calculation of
expectation values of the form (Harrison and Kreps (1979)):

V D EQŒP.X.T1/; : : : ; X.TM //� (2.1)

Here X.t/ is an N -dimensional vector and represents the value of a set of under-
lying market factors (stock prices, interest rates, foreign exchange pairs, etc) at time
t . P.X.T1/; : : : ; X.TM // is the payout function of the priced security, and depends
in general on M observations of those factors. In the following, we will denote
the collection of such observations by a d D .N � M/-dimensional state vector
X D .X.T1/; : : : ; X.TM //

T, and by Q.X/ the appropriate risk-neutral distribution
(Harrison and Kreps (1979)) according to which the components ofX are distributed.

1 The connection between AD and the adjoint approach of Giles and Glasserman (2006) is also
discussed in Giles (2007).
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The expectation value in (2.1) can be estimated by means of Monte Carlo
by sampling a number NMC of random replicas of the underlying state vector
XŒ1�; : : : ; XŒNMC�, sampled according to the distribution Q.X/, and evaluating the
payout P.X/ for each of them. This leads to the central limit theorem (Kallenberg
(1997)) estimate of the option value V as:

V '
1

NMC

NMCX
iMCD1

P.XŒiMC�/ (2.2)

with standard error˙=
p
NMC, where˙2 D EQŒP.X/

2��EQŒP.X/�
2 is the variance

of the sampled payout.
The pathwise derivative method allows the calculation of the sensitivities of

the option price V (Equation (2.1)) with respect to a set of N� parameters � D
.�1; : : : ; �N� /, with a single simulation. This can be achieved by noticing that, when-
ever the payout function is regular enough (eg, Lipschitz continuous), and under
additional conditions that are often satisfied in financial pricing (see, for example,
Glasserman (2004)), the sensitivity N�k � @V=@�k can be written as:

N�k D EQ

�
@P� .X/

@�k

�
(2.3)

In general, the calculation of Equation (2.3) can be performed by applying the
chain rule, and averaging on each Monte Carlo path the so-called pathwise derivative
estimator:

N�k �
@P� .X/

@�k
D

dX
jD1

@P� .X/

@Xj

@Xj

@�k
C
@P� .X/

@�k
(2.4)

It is worth noting (although it is generally overlooked in the academic literature) that
the payout P� .X.�// may depend on � not only implicitly through the vector X.�/,
but also explicitly. The second term in Equation (2.4) is therefore important and needs
to be kept in mind when implementing the pathwise derivative method.

The matrix of derivatives of each state variable in (2.4), or tangent state vector, is
by definition given by:

@Xj

@�k
D lim
��!0

Xj .�1; : : : ; �k C��; : : : ; �N� / �Xj .�/

��
(2.5)

This gives the intuitive interpretation of @Xj =@�k in terms of the difference between
the sample of the j th component of the state vector obtained after an infinitesimal
“bump” of the kth parameter, Xj .�1; : : : ; �k C ��; : : : ; �N� /, and the base sample
Xj .�/, both calculated on the same random realization.
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In the special case in which the state vectorX D .X.T1/; : : : ; X.TM // is a path of
an N -dimensional diffusive process, the pathwise derivative estimator (2.4) may be
rewritten as:

N�k D

MX
lD1

NX
jD1

@P.X.T1/; : : : ; X.TM //

@Xj .Tl/

@Xj .Tl/

@�k
C
@P� .X/

@�k
(2.6)

where we have relabeled the d components of the state vector X grouping together
different observationsXj .T1/; : : : ; Xj .TM / of the same (j th) asset. In particular, the
components of the tangent vector for the kth sensitivity corresponding to observations
at times .T1; : : : ; TM / along the path of the j th asset, say:

�jk.Tl/ D
@Xj .Tl/

@�k
(2.7)

with l D 1; : : : ;M , can be obtained by solving a stochastic differential equation
(Kunita (1990); Protter (1997); and Glasserman (2004)).

The pathwise derivative estimators of the sensitivities are mathematically equiva-
lent2 to the estimates obtained by bumping, using the same random numbers in both
simulations, and for a vanishingly small perturbation. In fact, when using the same
set of random numbers for the base and bumped simulations of the expectation in
(2.2), the finite-difference estimator of the kth sensitivity is equivalent to the average
over the Monte Carlo paths of the quantity:

P.X.� .k//ŒiMC�/ � P.X.�/ŒiMC�/

��
(2.8)

with � .k/ D .�1; : : : ; �k C ��; : : : ; �N� /. In the limit �� ! 0, this is equivalent
in turn to Equation (2.3). As a result, the pathwise derivative method and bumping
provide in the limit �� ! 0 exactly the same estimators for the sensitivities, ie,
estimators with the same expectation value, and the same Monte Carlo variance.

Since bumping and the pathwise derivative method provide estimates of the option
sensitivities with comparable variance, the implementation effort associated with the
latter is generally justified if the computational cost of the estimator (2.3) is less than
the corresponding one associated with bumping.

The computational cost of evaluating the tangent state vector is strongly dependent
on the problem considered. In some situations, its calculation can be implemented
at a cost that is smaller than that associated with the propagation of the perturbed
paths in bumping. Apart from very simple models, this is the case, for instance, in the

2 Provided that the state vector is a sufficiently regular function of � (Glasserman (2004) and Protter
(1997)).
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examples considered by Glasserman and Zhao (1999) in the context of the LIBOR
market model.

However, when an efficient implementation of the tangent state vector is possible,
the calculation of the gradient of the payout can constitute a significative part of
the total computational cost, decreasing or eliminating altogether the benefits of the
pathwise derivative method. Indeed, payouts of structured products often depend
on hundreds of observations of several underlying assets, and their calculation is
generally time consuming. For these payouts, the analytic calculation of the gradient is
usually too cumbersome so that finite differences are the only practical route available
(Giles and Glasserman (2006)). The multiple evaluation of the payout to obtain a large
number of gradient components can by itself make the pathwise derivative method
less efficient than bumping.

The efficient calculation of the derivatives of the payout is therefore critical for
the successful implementation of the pathwise derivative method. In the following,
we will illustrate how such an efficient calculation can be achieved by means of
AD. In particular, we will show that the adjoint mode of AD allows the gradient
of the payout function to be obtained at a computational cost that is bounded by
approximately four times the cost of evaluating the payout itself, thus solving one of
the main implementation difficulties – and performance bottlenecks – of the pathwise
derivative method.

We will begin by reviewing the main ideas behind this powerful computational
technique in the next section.

3 ALGORITHMIC DIFFERENTIATION

Algorithmic differentiation is a set of programming techniques first introduced in the
early 1960s aimed at accurately and efficiently computing the derivatives of a function
given in the form of a computer program. The main idea underlying AD is that any
such computer program can be interpreted as the composition of functions, each of
which is in turn a composition of basic arithmetic (addition, multiplication, etc), and
intrinsic operations (logarithm, exponential, etc). Hence, it is possible to calculate
the derivatives of the outputs of the program with respect to its inputs by applying
mechanically the rules of differentiation. This makes it possible to generate auto-
matically a computer program that evaluates efficiently and with machine-precision
accuracy the derivatives of the function (Griewank (2000)).

What makes AD particularly attractive when compared to standard (eg, finite-
difference) methods for the calculation of the derivatives is its computational effi-
ciency. In fact, AD aims to exploit the information on the structure of the computer
function, and on the dependencies between its various parts, in order to optimize the
calculation of the sensitivities.
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In the following, we will review these ideas in more detail. In particular, we will
describe the two basic approaches toAD, the so-called tangent (or forward) and adjoint
(or backward) modes. These differ in regard to how the chain rule is applied to the
composition of instructions representing a given function, and are characterized by
different computational costs for a given set of computed derivatives. Griewank (2000)
contains a complete introduction to AD. Here, we will only recall the main results in
order to clarify how this technique is beneficial in the implementation of the pathwise
derivative method. We will begin by stating the results regarding the computational
efficiency of the two modes of AD, and we will justify them by discussing a toy
example in detail.

3.1 Computational complexity of the tangent and adjoint modes of
algorithmic differentiation

Let us consider a computer program with n inputs, x D .x1; : : : ; xn/ and m outputs
y D .y1; : : : ; ym/ that is defined by a composition of arithmetic and nonlinear (intrin-
sic) operations. Such a program can be seen as a function of the form F W Rn ! Rm:

.y1; : : : ; ym/
T D F.x1; : : : ; xn/ (3.1)

In its simplest form, AD aims to produce coding evaluating the sensitivities of the
outputs of the original program with respect to its inputs, ie, to calculate the Jacobian
of the function F :

Jij D
@Fi .x/

@xj
(3.2)

with Fi .x/ D yi .
The tangent mode ofAD allows the calculation of the functionF and of its Jacobian

at a cost – relative to that for F – that can be shown, under a standard computational
complexity model (Griewank (2000)), to be bounded by a small constant, !T , times
the number of independent variables, namely:

CostŒF& J �

CostŒF �
6 !T n (3.3)

The value of the constant !T can be also bounded using a model of the relative cost
of algebric operations, nonlinear unary functions and memory access. This analysis
gives !T 2 Œ2; 52 � (Griewank (2000)).

The form of the result (3.3) appears quite natural as it is the same computational
complexity of evaluating the Jacobian by perturbing one input variable at a time,
repeating the calculation of the function, and forming the appropriate finite-difference
estimators. As we will illustrate in the next section, the tangent mode avoids repeating
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the calculations of quantities that are left unchanged by the perturbations of the dif-
ferent inputs, and it is therefore generally more efficient than bumping.

Consistent with Equation (3.3), the tangent mode of AD provides the derivatives
of all the m components of the output vector y with respect to a single input xj , ie,
a single column of the Jacobian (3.2), at a cost that is independent of the number of
dependent variables and bounded by a small constant, !T . In fact, the same holds
true for any linear combination of the columns of the Jacobian, Lc.J /, namely:

CostŒF& Lc.J /�

CostŒF �
6 !T (3.4)

This makes the tangent mode particularly well suited for the calculation of (linear
combinations of) the columns of the Jacobian matrix (3.2). Conversely, it is generally
not the method of choice for the calculation of the gradients (ie, the rows of the
Jacobian (3.2)) of functions of a large number of variables.

On the other hand, the adjoint mode of AD, or AAD, is characterized by a compu-
tational cost of the form (Griewank (2000)):

CostŒF& J �

CostŒF �
6 !Am (3.5)

with !A 2 Œ3; 4�, ie, AAD allows the calculation of the function F and of its Jacobian
at a cost – relative to that forF – that is bounded by a small constant times the number
of dependent variables.

As a result,AAD provides the full gradient of a scalar (m D 1) function at a cost that
is just a small constant, times the cost of evaluating the function itself. Remarkably,
such relative cost is independent of the number of components of the gradient.

For vector-valued functions, AAD provides the gradient of arbitrary linear combi-
nations of the rows of the Jacobian, Lr.J /, at the same computational cost as for a
single row, namely:

CostŒF& Lr.J /�

CostŒF �
6 !A (3.6)

This clearly makes the adjoint mode particularly well suited for the calculation of
(linear combinations of) the rows of the Jacobian matrix (3.2). When the full Jacobian
is required, the adjoint mode is likely to be more efficient than the tangent mode
when the number of independent variables is significantly larger than the number of
dependent ones (m� n).

We now provide justification of these results by discussing an explicit example in
detail.
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3.2 How algorithmic differentiation works: a simple example

Let us consider, as a specific example, the function F W R2 ! R3, .y1; y2/T D
.F1.x1; x2; x3/; F2.x1; x2; x3//

T defined as: 
y1

y2

!
D

 
2 log x1x2 C 2 sin x1x2

4 log2 x1x2 C cos x1x3 � 2x3 � x2

!
(3.7)

3.2.1 Algorithmic specification of functions and computational graphs

Given a value of the input vector x, the output vector y is calculated by a computer
code by means of a sequence of instructions. In particular, the execution of the program
can be represented in terms of a set of scalar internal variables, w1; : : : ; wN , such
that:

wi D xi ; i D 1; : : : ; n (3.8)

wi D ˚i .fwj gj�i /; i D nC 1; : : : ; N (3.9)

Here the first n variables are copies of the input ones, and the others are given by a
sequence of consecutive assignments; the symbol fwj gj�i indicates the set of internal
variables wj , with j < i , such that wi depends explicitly on wj ; the functions
˚i represent a composition of one or more elementary or intrinsic operations. In
this representation, the last m internal variables are the output of the function, ie,
yi�NCm D wi , i D N �mC 1; : : : ; N . This representation is by no means unique,
and can be constructed in a variety of ways. However, it is a useful abstraction in order
to introduce the mechanism of AD. For instance, for the function (3.7), the internal
calculations can be represented as follows:

w1 D x1; w2 D x2; w3 D x3

#

w4 D ˚4.w1; w2/ D 2 logw1w2

w5 D ˚5.w1; w2/ D 2 sinw1w2

w6 D ˚6.w1; w3/ D cosw1w3

w7 D ˚7.w2; w3/ D 2w3 C w2

#

y1 D w8 D ˚8.w4; w5/ D w4 C w5

y2 D w9 D ˚9.w4; w6; w7/ D w
2
4 C w6 � w7

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

(3.10)

In general, a computer program contains loops that may be executed a fixed or variable
number of times, and internal controls that alter the calculations performed according
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12 L. Capriotti

FIGURE 1 Computational graph corresponding to the instructions (3.10) for the function
in Equation (3.7).

Out

y1 = w8 = w4 + w5

w4 = 2logw1w2

w1 = x1 w2 = x2 w3 = x3

w5 = 2sinw1w2 w6 = cosw1w3 w7 = 2w3 + w2

D8,4

D4,1

D4,2 D5,1

D6,1

D5,2

D7,2

D7,3D6,3

In

D8,5
D9,4

D9,6 D9,7

y2 = w9 = w 2
4 + w6 – w7

to different criteria. Nevertheless, Equations (3.8) and (3.9) are an accurate represen-
tation of how the program is executed for a given value of the input vector x, ie, for a
given instance of the internal controls. In this respect, AD aims to perform a piecewise
differentiation of the program by reproducing the same controls in the differentiated
code (Griewank (2000)).

The sequence of instructions (3.8) and (3.9) can be effectively represented by
means of a computational graph with nodes given by the internal variables wi , and
connecting arcs between explicitly dependent variables. For instance, for the function
in Equation (3.7) the instructions (3.10) can be represented as in Figure 1. Moreover,
to each arc of the computational graph, say connecting node wi and wj with j < i ,
it is possible to associate the arc derivative:

Di;j D
@˚i .fwkgk�i /

@wj
(3.11)

as illustrated in Figure 1. Crucially, these derivatives can be calculated in an auto-
matic fashion by applying mechanically the rules of differentiation instruction by
instruction.
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3.2.2 Tangent mode

Once the program implementing F.x/ is represented in terms of the instructions
in (3.8) and (3.9) (or by a computational graph like that in Figure 1 on the facing
page) the calculation of the gradient of each of its m components:

rFi .x/ D .@x1Fi .x/; @x2Fi .x/; : : : ; @xnFi .x//
T (3.12)

simply involves the application of the chain rule of differentiation. In particular, by
applying the rule starting from the independent variables, the tangent mode of AD is
obtained:

rwi D ei ; i D 1; : : : ; n (3.13)

rwi D
X
j�i

Di;jrwj ; i D nC 1; : : : ; N (3.14)

where e1; e2; : : : ; en are the vectors of the canonical basis in Rn, and Di;j are the
local derivatives (3.11). For the example in Equation (3.7) this gives, for instance:

rw1 D .1; 0; 0/
T; rw2 D .0; 1; 0/

T; rw3 D .0; 0; 1/
T

#

D4;1 D 2w2=.w1w2/; D4;2 D 2w1=.w1w2/

rw4 D D4;1rw1 CD4;2rw2

D5;1 D 2w2 cosw1w2; D5;2 D 2w1 cosw1w2

rw5 D D5;1rw1 CD5;2rw2

D6;1 D �w3 sinw1w3; D6;3 D �w1 sinw1w3

rw6 D D6;1rw1 CD6;3rw3

D7;2 D 1; D7;3 D 2

rw7 D D7;2 rw2 CD7;3rw3

#

D8;4 D 1; D8;5 D 1

ry1 D rw8 D D8;4rw4 CD8;5rw5

D9;4 D 2w4; D9;6 D 1; D9;7 D �1

ry2 D rw9 D D9;4rw4 CD9;6rw6 CD9;7rw7

This leads to:

ry1 D .D8;4D4;1 CD8;5D5;1;D8;4D4;2 CD8;5D5;2; 0/
T

ry2 D .D9;4D4;1 CD9;6D6;1;D9;4D4;2

CD9;7D7;2;D9;6D6;3 CD9;7D7;3/
T

which gives the correct result, as can immediately be verified.
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In the relations above, each component of the gradient is propagated independently.
As a result, the computational cost of evaluating the Jacobian of the function F
is approximately n times the cost of evaluating one of its columns, or any linear
combination of them. For this reason, the propagation in the tangent mode is more
conveniently expressed by replacing the vectors rwi with the scalars:

Pwi D

nX
jD1

�j
@wi

@xj
(3.15)

also known as tangents. Here � is a vector in Rn specifying the chosen linear com-
bination of columns of the Jacobian. Indeed, in this notation, the propagation of the
chain rule (3.13) and (3.14) becomes:

Pwi D �i ; i D 1; : : : ; n (3.16)

Pwi D
X
j�i

Di;j Pwj ; i D nC 1; : : : ; N (3.17)

At the end of the propagation we therefore find Pwi , i D N �mC 1; : : : ; N :

Pwi D Pyi�NCm D

nX
jD1

�j
@wi

@xj
D

nX
jD1

�j
@yi�NCm

@xj
(3.18)

ie, a linear combination of the columns of the Jacobian.
As illustrated in Figure 2 on the facing page, the propagation of the chain rule

(3.16) and (3.17) allows us to associate the tangent of the corresponding internal
variable, say Pwi , with each node of the computational graph. This can be calculated
as a weighted average of the tangents of the variables preceding it on the graph (ie,
all the Pwj such that i � j ), with weights given by the arc derivatives associated with
the connecting arcs. As a result, the tangents propagate through the computational
graph from the independent variables to the dependent ones, ie, in the same direction
followed in the evaluation of the original function, or forward. The propagation of
the tangents can in fact proceed instruction by instruction, at the same time as the
function is evaluated.

It is easy to realize that the cost for the propagation of the chain rule (3.16) and
(3.17), for a given linear combination of the columns of the Jacobian, is of the same
order as the cost of evaluating the function F itself. Hence, for the simple example
considered here, Equation (3.4) represents an appropriate estimate of the compu-
tational cost of any linear combination of columns of the Jacobian. On the other
hand, in order to get each column of the Jacobian it is necessary to repeat n D 3

times the calculation of the computational graph in Figure 2 on the facing page,
eg, by setting � equal to each vector of the canonical basis in R3. As a result, the
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FIGURE 2 Computational graph for the tangent mode differentiation of the function in
Equation (3.7).
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D8,4
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y1 = w8 
⋅ ⋅

w4 = D4,1w1 + D4,2w2
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⋅ ⋅

w5 = D5,1w1 + D5,2w2
⋅⋅ ⋅⋅⋅⋅ w6 = D6,1w1 + D6,3w3 w7 = D7,2w2 + D7,3w3

⋅⋅ ⋅ ⋅ ⋅⋅

D9,4w4 + D9,6 w6 + D9,7w7
⋅ ⋅⋅

⋅ ⋅y2 = w9 

==

computational cost of evaluating the Jacobian relative to the cost of evaluating the
function F is proportional to the number of independent variables, as predicted by
Equation (3.3).

Finally, we remark that, by simultaneously carrying out the calculation of all the
components of the gradient (or, more generally, of a set of n linear combinations
of columns of the Jacobian) the calculation can be optimized by reusing a certain
amount of computations (eg, the arc derivatives). This leads to a more efficient imple-
mentation also known as tangent multimode. Although the computational cost for
the tangent multimode remains of the form (3.3) and (3.4), the constant !T for these
implementations is generally smaller than for the standard tangent mode. This will
also be illustrated in Section 4.

3.2.3 Adjoint mode

The adjoint mode provides the Jacobian of a function in a mathematically equivalent
way by means of a different sequence of operations. More precisely, the adjoint mode
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results from propagating the derivatives of the final result with respect to all the
intermediate variables – the so-called adjoints – until the derivatives with respect
to the independent variables are formed. Formally, the adjoint of any intermediate
variable wi is defined as:

Nwi D

mX
jD1

�j
@yj

@wi
(3.19)

where � is a vector in Rm. In particular, for each of the dependent variables we have
Nyi D �i , i D 1; : : : ; m, while, for the intermediate variables, we instead have:

Nwi D
@y

@wi
D
X
j�i

@y

@wj

@wj

@wi
D
X
j�i

Dj;i Nwj (3.20)

where the sum is over the indices j > i such that wj depends explicitly on wi . At
the end of the propagation we therefore find Nwi , i D 1; : : : ; n:

Nwi D Nxi D

mX
jD1

�j
@yj

@wi
D

mX
jD1

�j
@yj

@xi
(3.21)

ie, a given linear combination of the rows of the Jacobian (3.2).
In particular, for the example in Equation (3.7) this gives:

Nw8 D Ny1 D �1; Nw9 D Ny2 D �2

#

Nw4 D D8;4 Nw8 CD9;4 Nw9

Nw5 D D8;5 Nw8

Nw6 D D9;6 Nw9

Nw7 D D9;7 Nw9

#

Nw1 D Nx1 D D4;1 Nw4 CD5;1 Nw5 CD6;1 Nw6

Nw2 D Nx2 D D4;2 Nw4 CD5;2 Nw5 CD7;2 Nw7

Nw3 D Nx3 D D6;3 Nw6 CD7;3 Nw7

It is immediately evident that, by setting � D e1 and � D e2 (with e1 and e2 canonical
vectors in R2), the adjoints . Nw1; Nw2; Nw3/ above give the components of the gradients
of ry1 and ry2, respectively.

As illustrated in Figure 3 on the facing page, Equation (3.20) has a clear interpre-
tation in terms of the computational graph: the adjoint of a quantity on a given node,
Nwi , can be calculated as a weighted sum of the adjoints of the quantities that depend

on it (ie, all the Nwj such that j � i ), with weights given by the local derivatives
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FIGURE 3 Computational graph for the adjoint mode differentiation of the function in
Equation (3.7).

Out

In

y1 = w8 = λ1
–

y2 = w9 = λ2
– –

D8,4

D4,1

D5,1w5 + D6,1w6
– –

– ––x1 = w1 = D4,1w4+

D5,2w5 + D7,2w7
– –

– ––x2 = w2 = D4,2w4 +

D6,3w6 + D7,3w7
– –

––x3 = w3 =

D4,2 D5,1

D5,2

D6,1

D8,5

D9,4
D9,6 D9,7

D7,2

D6,3 D7,3

– –w5 = D8,5w8
– –w6 = D9,6w9

– –w7 = D9,7w9w4 = D8,4w8 + D9,4w9
– – –

–

associated with the respective arcs. As a result, the adjoints propagate through the
computational graph from the dependent variables to the independent ones, ie, in the
opposite direction to that of evaluation of the original function, or backward. The
main consequence of this is that, in contrast to the tangent mode, the propagation
of the adjoints cannot in general be simultaneous with the execution of the function.
Indeed, the adjoint of each node depends on variables that are yet to be determined
on the computational graph. As a result, the propagation of the adjoints can in general
begin only after the construction of the computational graph has been completed, and
the information on the values and dependences of the nodes on the graph (eg, the arc
derivatives) has been appropriately stored.

It is easy to see that the cost for the propagation of the chain rule (3.20) for a
given linear combination of the rows of the Jacobian is of the same order as the
cost of evaluating the function F itself, in agreement with Equation (3.6). On the
other hand, in order to get each row of the Jacobian, m D 2 times the calculation
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of the computational graph in Figure 3 on the preceding page has to be repeated,
eg, by setting � equal to each vector of the canonical basis in R2. As a result, the
computational cost of evaluating the Jacobian relative to the cost of evaluating the
function F itself is proportional to the number of dependent variables, as predicted
by Equation (3.5).

3.3 Algorithmic differentiation tools

As illustrated in the previous examples, AD gives a clear set of prescriptions by
which, given any computer function, the code implementing the tangent or adjoint
mode for the calculation of its derivatives can be developed. This involves representing
the computer function in terms of its computational graph, calculating the derivatives
associated with each of the elementary arcs, and propagating either the tangents or the
adjoints in the appropriate direction. This procedure, being mechanical in nature, can
be automated. Indeed, several AD tools have been developed that allow the automatic
implementation of the calculation of derivatives either in the tangent or in the adjoint
mode. These tools can be grouped into two main categories, namely source code
transformation and operator overloading.3

Source code transformation tools are computer programs that take the source code
of a function as input, and return the source code implementing its derivatives. These
tools rely on parsing the instructions of the input code and constructing a representa-
tion of the associated computational graph. In particular, an AD parser typically splits
each instruction into the constituent unary or binary elementary operations for which
the corresponding derivative functions are known.

On the other hand, the operator overloading approach exploits the flexibility of
object-oriented languages in order to introduce new abstract data types suitable for
representing tangents and adjoints. Standard operations and intrinsic functions are
then defined for the new types in order to allow the calculation of the tangents and the
adjoints associated with any elementary instruction in a code. These tools operate by
linking a suitable set of libraries to the source code of the function to be differentiated,
and by redefining the type of the internal variables. Utility functions are generally
provided to retrieve the value of the desired derivatives.

Source code transformation and operator overloading are both the subject of active
research in the field of AD. Operator overloading is appealing for the simplicity of
usage that boils down to linking some libraries, redefining the types of the variables,
and calling some utility functions to access the derivatives. The main drawback is the
lack of transparency, and the fact that the calculation of derivatives is generally slower
than in the source code transformation approach. Source code transformation involves
more work but it is generally more transparent as it provides the code implementing the

3 An excellent source of information in the field can be found at www.autodiff.org.
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calculation of the derivatives as a sequence of elementary instructions. This simplicity
facilitates compiler optimization, thus generally resulting in a faster execution. In the
following section we consider examples of the source code transformation approach
while discussing the calculation of the derivatives of the payout required for the
implementation of the pathwise derivative method.

4 CALCULATING THE DERIVATIVES OF PAYOUT FUNCTIONS
USING ALGORITHMIC DIFFERENTIATION

In this section we discuss a few examples illustrating how AD can be used to produce
efficient coding for the calculation of the derivatives of the payout in (2.4).

Payouts of structured products are typically scalar functions of a large number
of dependent variables. As a result, the adjoint mode of AD is generally best suited
for the fast calculation of their derivatives. This will be clear from the examples
discussed in Section 4.1. On the other hand, for vector-valued payouts, the adjoint
and tangent modes of AD can often be combined in order to generate a highly efficient
implementation, as discussed in Section 4.2. As specific examples, in the following
we will consider European-style basket options and path-dependent “best of” Asian
options.

4.1 Scalar payouts

4.1.1 Basket options

In Figure 4 on the next page we show the pseudocode for the payout function and its
adjoint counterpart for a simple basket call option with payout:

P D Pr.X.T // D e�rT
� NX
iD1

wiXi .T / �K

�C
(4.1)

where X.T / D .X1.T /; : : : ; XN .T // represent the value of a set of N underlying
assets at time T , say a set of equity prices, wi , i D 1; : : : ; n, are the weights defining
the composition of the basket,K is the strike price and r is the risk-free yield for the
maturity considered. Here, for simplicity, we consider the case in which interest rates
are deterministic. As a result, the interest rate r can be seen as a model parameter
determined by the yield curve. For this example, we are interested in the calculation
of the sensitivities with respect to r and the N components of the state vector X so
that the other parameters (ie, strike and maturity) are seen here as dummy constants.

As illustrated in the pseudocode in part (a) of Figure 4 on the next page, the
inputs of the computer function implementing the payout (4.1) are a scalar r and
an N -dimensional vector X (we suppress the dependence on T from now on). The
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FIGURE 4 Pseudocode for (a) the payout function and (b) its adjoint for the basket call
option of Equation (4.1).

(a)

(b)

output is a scalar P . On the other hand, the adjoint of the payout function, shown in
part (b) of Figure 4, is of the form:

.P; Nr; NX/ D NPr.X; NP / (4.2)

ie, it has the scaling factor NP as an additional scalar input, and the adjoints:

Nr D
@Pr.X/

@r
NP (4.3)

NXi D
@Pr.X/

@Xi
NP (4.4)

for i D 1; : : : ; N as additional outputs. In this and in the following figures we use the
suffixes “_b” and “_d” to represent in the pseudocodes the “bar” and “dot” notations
for adjoint and tangent quantities, respectively.
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As discussed in Section 3, the adjoint payout function typically contains an initial
forward sweep. This replicates the original payout script and evaluates the first output
P of the function.The forward sweep is also used to keep a record of all the information
necessary to calculate the arc derivatives (Section 3.2.1) that cannot be recovered
efficiently going backwards on the computational graph. However, in this simple
example, as shown in Figure 4 on the facing page, no information needs to be stored
during the forward sweep, and the latter is just an exact replica of the original payout
code.

Once the forward sweep is completed, the backward sweep propagates the adjoint
quantities, reversing the order of the computations with respect to the original function.
In the specific example, first the reverse sweep computes the adjoint counterpart of
the very last instruction of the forward sweep:

P.D; x/ D D.x/C (4.5)

as seen as a function of the intermediate variables D and x. The adjoints of D and x
are simply:

ND D
@P.D; x/

@D
NP D .x/C NP (4.6)

and:

Nx D
@P.D; x/

@x
NP D D#.x/ NP (4.7)

where #.x/ is the Heaviside function. Then, taking the adjoint of the function
D D exp.�rT / with constant T gives:

Nr D
@D.r/

@r
ND D �DT ND (4.8)

Finally, the adjoint of the instructions x D x.B/ D B �K (with K constant) and:

B D B.X/ D

NX
iD1

wiXi .T /

are computed in turn. Respectively, these are:

NB D
@x.B/

@B
Nx D Nx (4.9)

and:
NXi D

@B.X/

@Xi
NB D wi NB (4.10)

for i D 1; : : : ; N . It is easy to recognize that the quantities Nr and NX constructed this
way represent the adjoints in Equations (4.3) and (4.4), respectively. For NP D 1, these
clearly give the gradient of the payout function (4.1).
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FIGURE 5 Ratios of the processing time required for the calculation of the value and of all
the derivatives of the payout function, and the processing time spent on the computation
of its value alone, as functions of the number of assets, N .
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FIGURE 6 Pseudocode for the tangent payout function for the basket call option of
Equation (4.1).

As mentioned in Section 3, AD cannot generally be expected to provide any mean-
ingful results for those values of the input variables for which the function is not
differentiable. This is the case, for instance, when the payout function involves the
maximum function as in the example above. In this case, the derivatives for the set
of inputs such that B.X/ D K are not defined, and are returned instead as zero.
However, in the context of the pathwise derivative method, this does not create any
practical difficulty as the set of points corresponding to these singularity constitutes
a zero probability subset of the sample space in Equation (2.1). In any case, it is also
generally possible to smooth out such singularities along the lines of the discussion
in Section 4.3.

By inspecting the structure of the adjoint payout, it appears clear that its computa-
tional cost is just a small multiple (of order two) of the cost of evaluating the original
payout. Indeed, it is easy to realize that the cost of the forward and backward sweeps
are roughly the same, thus making the cost of calculating the complete gradient of the
payout roughly twice the cost of evaluating the payout alone. In particular, the ratio of
the processing time spent in the calculation of the adjoint payout and the processing
time spent in the original payout function is independent of the number of inputs, in
agreement with Equation (3.6).

The remarkable efficiency of the adjoint payout function is clearly illustrated in
part (b) of Figure 5 on the facing page where the processing time ratio is plotted as
a function of the number of assets N : the calculation of Nd D N C 1 derivatives
of the payout (one for each asset plus the derivative with respect to r) requires an
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FIGURE 7 Pseudocode for the tangent multimode payout function for the basket call
option of Equation (4.1).

extra overhead of about 70% with respect to the calculation of the payout itself for
any number of underlying assets N . This is in stark contrast to the relative cost of
evaluating the gradient by means of one-sided finite differences or the tangent mode
of AD (also shown in the same figure), both scaling linearly with N .

The pseudocodes for the tangent payout, in the standard and in the multimode
implementation, are given in Figure 6 on the preceding page and Figure 7, respectively.
These are much more straightforward to understand because they correspond to a more
natural application of the chain rule, as explained in Section 3.2.2. The tangent payout
code must be runNC1 times, setting in turn one component of the tangent input vector
I D . Pr; PX/T to one and the remaining ones to zero. The tangent multimode payout
needs instead to be run only once, and it is initialized by the set of Nd D N C 1

tangent input vectors above. More precisely, the inputs of the tangent multimode
payout are an Nd-dimensional vector Prj , and the N � Nd matrix PXi;j , which can be
chosen as:

Prj D ıj;1; PXi;j D ıi;j�1 (4.11)

for i D 1; : : : ; N and j D 1; : : : ; Nd.
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FIGURE 8 Pseudocode for (a) the payout function and (b) its adjoint for the “best of” Asian
option of Equation (4.12).

(a)

(b)

The vector of adjoints X_bŒ� is assumed initialized to zero. The forward sweep in the adjoint payout is omitted for
brevity because its code is identical to that in part (a). Note that the array “branch_vector” can be omitted in the
payout implementation, and serves a purpose only in the forward sweep.

As shown in Figure 5 on page 22, in both cases, the resulting cost of obtaining
the gradient of the payout function is asymptotically proportional to the number of
components in the basket. However, as anticipated in Section 3.2.2, the tangent mul-
timode payout is significantly more efficient than the standard tangent mode because
it avoids the multiple evaluation of the function value, and in general is able to reuse
the value of the arc derivatives.
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4.1.2 “Best of” Asian options

As a second example we consider a path-dependent option, namely a “best of” Asian
option with (undiscounted) payout given by:

P.X/ D .A.TM / �K; 0/
C (4.12)

whereA.TM / D
PM
mD1 �.Tm/=M , and�.Tm/ is the maximum return of theN under-

lying assets at time Tm, namely:

�.Tm/ D max
iD1;:::;N

�
Xi .Tm/

Xi .T0/

�
(4.13)

where T0 is a reference observation time. In this example, we are interested in the
calculation of the derivatives of the payout function with respect to the d D N �M
components of the state vector. The pseudocodes for the payout and its adjoint are
shown in Figure 8 on the preceding page. Here �.Tm/ and A.TM / are represented by
the variables “max_step” and “sum”, respectively. As in the previous example, the
initial part of the adjoint code – the forward sweep – essentially amounts to evaluating
the payout function. However, in this case, some information needs to be stored during
the forward sweep in order for the reverse sweep to be executed efficiently. This is
contained in the array “branch_vector”, tagging the asset with the largest return on
each time step.

The backward sweep begins with the adjoint of the instructions:

P.x/ D .x; 0/C (4.14)

and:
x D x.A/ D A.TM / �K (4.15)

These give, respectively:
Nx D #.x/ NP (4.16)

and:
NA.TM / D Nx (4.17)

Then, since the order of the calculations in the backward sweep is reversed with
respect to that of the payout function, the loops on the number of assets and on the
time steps are executed in opposite directions with respect to the original ones.4 In
particular, at each iteration of the loop on the time steps, the adjoint of �.Tm/:

N�.Tm/ D
@A.TM /

@�.Tm/
NA.TM / D

NA.TM /

M
(4.18)

4 However, note that in this example this is important only for the loop on the time steps, as the
order is unimportant in the loop on the assets.
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is calculated. In turn, for each asset, the adjoints:

NXi .Tm/ D
@�.Tm/

@Xi .Tm/
N�.Tm/ D

ıi;i?.m/

Xi?.m/.T0/
N�.Tm/ (4.19)

(where i?.m/ is the index corresponding to the asset with the highest return at timeTm)
are finally computed. Note that, in order to perform the calculation of the deriva-
tive @�.Tm/=@Xi .Tm/ above, the algorithm needs to know which of the N assets
assumed the maximum return at time Tm. This is precisely the content of the array
“branch_vector” constructed during the forward sweep. Without this information, the
backward sweep would have to perform on each time step an additional loop on the
number of assets. This would result in a computational cost O.N/ higher.

As observed in the previous example, a simple inspection of the adjoint code reveals
that its computational cost is a small multiple of the cost of the original payout. As
a result, the relative cost of evaluating the adjoint payout with respect to evaluating
the payout alone is independent of the number of input variables d D M �N . This
is clearly illustrated in part (a) of Figure 5 on page 22, showing that the calculation
of the payout and of its derivatives with AAD is at most approximately 2.5 times
more expensive than the original payout evaluation, for any number of underlying
assets. Similar results can be obtained by keeping the number of assets constant and
increasing the number of observations in time.As noted before, this is in contrast to the
relative cost provided by the tangent mode of AD, scaling linearly with d (although
with a smaller proportionality constant in the multimode implementation).5

4.2 Vector-valued payouts and the hybrid tangent–adjoint mode

In financial practice, it is not uncommon to use the same Monte Carlo simulation to
evaluate simultaneously a portfolio of R contingent claims depending on a common
pool of underlying assets. In these situations, the payouts are represented by vector-
valued functions and each component, Pj , represents the value of the cashflows of
one of the options in the portfolio.

The adjoint mode of AD is particularly well suited to the calculation of the sensitiv-
ities of the portfolio as a whole. Indeed, as discussed in Section 3.2.3, the adjoint mode
of AD provides in general the most efficient way to evaluate the linear combination:6

NXi D

RX
jD1

@Pj

@Xi
NPj (4.20)

5 The pseudocodes for the tangent payouts for this example are omitted for brevity and are available
upon request.
6 In this discussion, we suppress for simplicity the explicit dependence of the payout on the
parameter � .
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As a result, by choosing each weight NPj equal to the notional amount of the j th
option, the value of the whole portfolio can be efficiently evaluated. These can be
used in turn to construct the pathwise derivative estimator (2.4) with the substitution:

P.X/!

RX
jD1

NPjPj .X/

providing the aggregated sensitivities of the portfolio.
In contrast, in those cases in which the risk associated with each option in the

portfolio is needed, the pathwise derivative method requires the calculation of the
full Jacobian of the payout function, Jij D @Pj .X/=@Xi . As discussed in Section 3,
the cost of calculating this Jacobian with AAD, divided by the cost of evaluating the
payout, scales linearly with the number of options in the portfolio R. Conversely, in
the tangent mode the same ratio scales linearly with the dimension of the state vector
d D M � N . As a result, the adjoint mode can be expected to be more efficient
than the tangent mode when the number of options in the portfolio is smaller than the
dimension of the state vector. This depends on the specific pricing problem at hand.

Nevertheless, in some common cases it is possible to combine the tangent and
adjoint modes to increase the efficiency of the calculation. This is best illustrated
with a simple example. Imagine that a payout function can be decomposed as:

.P1; : : : ; PR/ D P.X/ D F
E.F I.X// (4.21)

with:
.Y1; : : : ; YJ / D F

I.X/ (4.22)

and:
.P1; : : : ; PR/ D F

E.Y / (4.23)

where Y D .Y1; : : : ; YJ /, J � R and J � d . Then a potentially efficient approach
to calculating the Jacobian of P.X/ involves the following steps:

(1) Evaluate the forward sweep as in the standard adjoint mode. In particular, store
the value of the intermediate variables Y .

(2) Apply the tangent mode of AD to get the matrix of derivatives @F E
j .Y /=@Ys

with j D 1; : : : ; R and s D 1; : : : ; J . The resulting cost, relative to that of
evaluating F E, scales linearly with J .

(3) For each s D 1; : : : ; J , evaluate NXs;i D @F I
s .X/=@Xi , i D 1; : : : ; d , using the

adjoint mode ofAD at a cost that is a small multiple of that of evaluatingF I.X/.
The resulting cost of obtaining the matrix NXs;i , relative to that of evaluating
F I, scales linearly with J .
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(4) Construct the Jacobian:

@Pj

@Xi
D

JX
sD1

@F E
j .Y /

@Ys
NXs;i (4.24)

It is easy to realize that the cost of the Jacobian Ji;j divided by that of evaluating
the payout P scales linearly with J instead of R or d . This can result in significant
savings with respect to the standard tangent or adjoint modes.

An elementary illustration of this situation is the generalization of the payouts con-
sidered in the previous sections for different values of the strike price, sayK1; : : : ; KR.
In these cases, the payout functions can be decomposed as:

Pj .Y / D .Y �Kj /
C (4.25)

where Y is a scalar given by
PN
iD1wiXi .T / for the basket option, and byA.TM / for

the “best of” Asian contract. As a result, the Jacobian of the payout function reads:

@Pj .Y /

@Y

@Y

@Xi
(4.26)

for i D 1; : : : ; d (d D N and d D N � M for the basket and “best of” Asian
options, respectively) and j D 1; : : : ; R. The gradient @Pj .Y /=@Y can be evaluated
in general with the tangent mode at a cost that is a small multiple of the cost of
evaluating Equation (4.25) above. In this simple example this gives:

@Pj .Y /

@Y
D #.Y �Kj / (4.27)

On the other hand, the quantities @Y =@Xi are common to all the components of
the payout function and need to be evaluated only once for all the options in the
portfolio. In addition, since Y is a scalar, this can be done efficiently with the
adjoint mode following exactly the same steps illustrated in Figure 4 on page 20
and Figure 8 on page 25. The resulting computational cost of the Jacobian Jij D
@Pj .X/=@Xi is a small multiple of the cost of evaluating the payout itself. Remark-
ably, this multiple is independent of both the number of options in the portfolio and
the dimension of the state vector.

4.3 Discontinuous payouts

As recalled in Section 2, the pathwise derivative method can be applied under a
specific regularity condition requiring the payout function to be Lipschitz continu-
ous (Glasserman (2004)). This requirement is generally cited in the literature as a
shortcoming of the pathwise derivative method. Indeed, it potentially limits the prac-
tical utility of the method to a great extent as the majority of the payout functions
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commonly used for structured derivatives contains discontinuities, eg, in the form of
digital features, random variables counting discrete events, or barriers.

Fortunately, the Lipschitz requirement turns out to be more of a theoretical than a
practical limitation. Indeed, a practical way of addressing non-Lipschitz payouts is to
smooth out the singularities they contain. Clearly this comes at the cost of introducing
a finite bias in the sensitivity estimates. However, such bias can generally be reduced to
levels that are considered more than acceptable in financial practice (see also Capriotti
and Giles (2011)).

5 PATHWISE DERIVATIVE METHOD WITH ADJOINT PAYOUTS

As illustrated in the previous sections, AD, especially in the adjoint mode, allows an
efficient calculation of the derivatives of the payout function, thus solving the main
implementation difficulty of the pathwise derivative method.

Additional speed-ups can also be obtained through an efficient calculation of the tan-
gent state vector. A remarkable example has been discussed, for instance, in Giles and
Glasserman (2006) for the case of European options in a diffusive setting. Although
this approach can in principle be generalized to path-dependent options, this may
result in a degradation of its performance, with a computational cost roughly scaling
with the number of observation times. Nonetheless, Equation (2.4) can be interpreted
as a linear combination of the columns of the Jacobian defined by the tangent state
vector Equation (2.5), with weights given by the derivatives of the payout function.
As a result, it can be shown that the AAD paradigm can be used in general to obtain a
highly efficient implementation of the complete pathwise derivative estimator. More
precisely, AAD ensures that any number of sensitivities can be evaluated at a total
computational cost that is bounded by roughly !A ' 4 times the cost of evaluating
the option value, independent of the number of sensitivities. A complete discussion
of the implementation details of the full AAD approach is given in a forthcoming
companion paper (Capriotti and Giles (2011)).

In the following, we will concentrate on those common cases in which the calcu-
lation of the tangent state vector, and of the sum in Equation (2.4), can be efficiently
implemented without making use of the full AAD approach (Capriotti and Giles
(2010) and Capriotti and Giles (2011)). This is, for instance, the case when each
model parameter �k affects only a limited number of components d� � d of the
state vector. In these cases, the matrix representing the tangent state vector (2.5) can
be put in (at least approximately) block diagonal form so that both the calculation
of its nonzero entries, and of the sum in Equation (2.4), can be performed at a cost
O.d�N� /, ie, a factor d�=d � 1 smaller than in the general case.

In a diffusive setting the situation described above is realized when each under-
lying asset depends only on a limited subset of model parameters � . In these cases,
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eg, commonly arising in equity or foreign exchange models, in order to calculate the
tangent state vector (2.5) only one or a limited number of diffusive equations needs
to be simulated for each sensitivity. In this case, it is easy to see that the computa-
tional cost of the pathwise derivative method with adjoint payouts is likely to become
smaller than that associated with bumping as the number of assets increases.

5.1 Numerical examples

5.1.1 Basket options

As a first illustration, we discuss the call option on a basket ofN assets (4.1) considered
in Section 4.1.1. Here we restrict ourselves to a lognormal model of the form:

Xi .t/ D X
0
i exp..r � �2i =2/t C �iWi .t// (5.1)

where X0i and �i are the spot price and volatility of the i th asset, respectively, and
Wi .t/ are standard Brownian motions such that EŒdWi .t/ dWj .t 0/� D �ij dt , where
� is a positive semidefiniteN �N correlation matrix. In this case, it is easy to derive
analytically the form of the tangent state vector (2.7) at any time t , eg, for delta and
vega:

�i .t/ �
@Xi .t/

@X0i
D
Xi .t/

X0i
(5.2)

Vi .t/ �
@Xi .t/

@�i
D Xi .t/.��i t CWi .t// (5.3)

respectively.
This example clearly falls under the situation discussed in the introduction to this

section as each model parameter, eg, spot price or volatility, affects only a single
underlying asset. As a result, the cost of the calculation of sensitivities by means of
the pathwise derivative method with adjoint payouts is O.N �M/ as it is the cost
of calculating the value of the option, Equation (2.2). This means that all deltas and
vegas for the basket call option (4.1) can be expected to be calculated at a cost that is
a small multiple of the cost of calculating the value of the option, irrespective of the
number of underlying assets in the basket.

This remarkable result is illustrated in the part (b) of Figure 9 on the next page,
where we plot the processing time necessary to calculate the full delta and vega risk
of the basket call option (4.1) divided by the time to calculate the value of the option,
say:

RCPU D
CostŒValueCRisk�

CostŒValue�
(5.4)

as a function of the number of underlying assets. As expected, the cost of evaluating
the Greeks by means of the pathwise derivative method with adjoint payouts is a small
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FIGURE 9 Processing time ratios (5.4) for the calculation of delta and vega risk by means
of the pathwise derivative method with adjoint payouts (circles) as a function of the number
of underlying assets.
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(a) “Best of” Asian option Equation (4.12) forM D 12 observation times. (b) Basket option.The estimated processing
time ratios for the calculation of the same sensitivities by means of bumping are also shown (triangles) for comparison
pruposes. The lines are guides for the eye.
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multiple of the cost of evaluating the value of the option itself. In this case the extra
overhead is approximately 130% of the cost of calculating the option value. In contrast,
the cost of estimating the same sensitivities by means of bumping grows linearly with
the number of assets. As a result, the pathwise derivative method with adjoint payouts
is computationally more efficient than bumping for any number of underlying assets,
with savings larger than one order of magnitude already for medium-sized (N � 10)
baskets.

5.1.2 “Best of” Asian options

As a second example, we consider the “best of” Asian option (4.12) discussed in Sec-
tion 4.1.2. Here, we will report results for local volatility (Hull (2002)) diffusions sim-
ulated by means of a standard Euler discretization. In particular, the drift and volatility
functions are assumed to take the form �i D r.t/Xi .t/ and �i D �Fi .Xi ; t /Xi .t/,
where r.t/ is the deterministic instantaneous short rate, and �Fi .x; t/ is the instant-
aneous volatility function for the i th asset at time t . For the sake of this discussion,
as is often the case in practice, we will regard the instantaneous volatility function
as depending parametrically on the level of the “at-the-money” volatility �ATM

i .t/,
namely �Fi .x; t/ D �

F
i .x; �

ATM
i .t//. In the discussion below we will consider stan-

dard delta and vega with respect to a single perturbation of the at-the-money volatili-
ties, namely �ATM

i .t/! �ATM
i .t/C ı�ATM

i .t/. Note that this example, although more
complex than the previous one, still falls in the category of problems in which the
calculation of each sensitivity involves the perturbation of the trajectories of just a
single underlying asset.

In part (a) of Figure 9 on the facing page we plot the processing time ratio (5.4)
for the calculation of delta and vega forM D 12 observation times, and for different
numbersN of underlying assets. As observed before for the basket option, the relative
cost associated with the pathwise derivative method with adjoint payouts is indepen-
dent of the number of assets. Remarkably, even for this more complicated example the
extra overhead associated with the calculation of the risk is limited to approximately
180% of the cost of calculating the option value. As a result, even for a single asset
N D 1, the pathwise derivative method with adjoint payouts is computationally more
efficient than bumping with savings that grow linearly to over one order of magnitude
already for a relatively small number (N � 12) of underlying assets.

6 CONCLUSIONS

In this paper we have shown how algorithmic differentiation can be used to produce
efficient coding for the calculation of the derivatives of the payout function, thus deal-
ing with one of the main performance bottlenecks of the pathwise derivative method.
With a variety of examples we demonstrated that the pathwise derivative method
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combined with algorithmic differentiation – especially in the adjoint mode – may
provide speed-ups of several orders of magnitude with respect to standard methods.
We also showed how the tangent mode can be combined with the adjoint mode for
extra performance for vectorized payouts.

In addition to Monte Carlo methods, the efficient calculation of the derivatives of the
payout function by means of algorithmic differentiation also has a natural application
in the implementation of adjoint techniques in partial differential equation applications
(Prideaux (2009)).

In forthcoming companion papers (Capriotti and Giles (2010) and Capriotti and
Giles (2011)) we will build on these ideas to illustrate how AAD can be used for
a highly efficient implementation of the complete pathwise derivative estimator. In
particular, we will show how adjoint implementations like those of Giles and Glasser-
man (2006) and Leclerc et al (2009) can be seen as instances of AAD. This allows
the fast calculation of the Greeks of complex path-dependent structured derivatives
with virtually any model used in computational finance. In particular, we will discuss
a variety of examples, including commodity structured products, correlation models
for credit derivatives, the application to Bermudan options, and second-order risk.
These results will demonstrate how algorithmic differentiation provides an extremely
general framework for the calculation of risk in financial engineering.
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