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Motivated by recent experiments on Bi3Mn4O12�NO3�, we study a frustrated J1-J2 Heisenberg model on the
two-dimensional �2D� honeycomb lattice. The classical J1-J2 Heisenberg model on the 2D honeycomb lattice
exhibits Néel order for J2�J1 /6. For J2�J1 /6, it has a family of degenerate incommensurate spin spiral
ground states where the spiral wave vector can point in any direction. Spin wave fluctuations at leading order
lift this accidental degeneracy in favor of specific wave vectors, leading to spiral order by disorder. For spin
S=1 /2, quantum fluctuations are, however, likely to be strong enough to melt the spiral order parameter over
a wide range of J2 /J1. Over a part of this range, we argue that the resulting state is a valence bond solid �VBS�
with staggered dimer order—this VBS is a lattice nematic which breaks lattice rotational symmetry. Our
arguments are supported by comparing the spin wave energy with the energy of the VBS obtained using a bond
operator formalism. Turning to the effect of thermal fluctuations on the spiral ordered state, any nonzero
temperature destroys the magnetic order, but the discrete rotational symmetry of the lattice remains broken
resulting in a thermal analog of the nematic VBS. We present arguments, supported by classical Monte Carlo
simulations, that this nematic transforms into the high temperature paramagnet via a thermal phase transition
which is in the universality class of the classical three-state Potts �clock� model in 2D. We discuss the
relevance of our results for honeycomb magnets, such as Bi3M4O12�NO3� �with M =Mn,V,Cr�, and bilayer
triangular lattice magnets.

DOI: 10.1103/PhysRevB.81.214419 PACS number�s�: 75.10.Jm

I. INTRODUCTION

Frustrated quantum magnets support a variety of remark-
able ground states which emerge as a result of quantum
fluctuations within a large set of classically degenerate
configurations.1 Such ground states include valence bond
solids �VBS�, magnetic analogs of supersolids, and quantum
spin liquids with various kinds of topological order. While
Néel order is common in bipartite lattices, the presence of
further neighbor interactions can frustrate this order and lead
to interesting quantum ground states. This has been exten-
sively studied on the square lattice,2–8 and, for S=1 /2, there
is an indication of a nonmagnetic ground state �for 0.45
�J2 /J1�0.6� sandwiched between two collinear magneti-
cally ordered ground states. In this paper, we study the J1-J2
Heisenberg model on the honeycomb lattice as the simplest
model Hamiltonian which incorporates frustration effects in
this lattice geometry. The Hamiltonian for this model is

H = J1�
�ij�

Si · S j + J2 �
��ij��

Si · S j , �1�

where �ij� denotes nearest neighbor pairs of sites, ��ij�� de-
notes next neighbor pairs of sites, and we set J1 ,J2�0.

A summary of the results contained in this paper is as
follows. We find that the classical �S=�� model has a Néel
ordered ground state for J2�J1 /6. For J2�J1 /6, this gives
way to a one parameter family of classically degenerate co-
planar spin spiral ground states. At O�1 /S�, quantum fluctua-
tions within this classical manifold pick specific spiral wave
vectors, leading to spiral order by disorder. For spin S=1 /2,

quantum fluctuations at T=0 are likely to be strong enough
to wipe out the spiral order parameter over a wide range of
J2 /J1. Over a significant part of this range of J2 /J1, we argue
that the spiral order for spin S=1 /2 melts into a valence
bond solid with staggered dimer order—this state has a spin
gap and preserves translational symmetry but breaks lattice
rotational symmetry leading to a “lattice nematic.” Turning
to physics at nonzero temperature, spin-spin correlations de-
cay exponentially at any temperature, but we show that the
nematic order survives—this nematic transforms into the
symmetric high temperature paramagnet via a thermal phase
transition which is in the universality class of the classical
three-state Potts �clock� model in two dimensions. Some of
the results on the classical degeneracy and spin wave fluc-
tuations have been discussed earlier,9,10 but are included for
completeness and clarity. We also discuss the connection of
our work to previous work on this model9–17 and related
models.2,3,6

Before we get into the detailed analysis of the above
model, we briefly discuss possible materials which might
realize the physics discussed in this paper. Bi3Mn4O12�NO3�
appears to be an example of a honeycomb lattice quantum
magnet.18 Since Mn forms MnO6 octahedral units, and there
is strong Hund’s coupling, the Mn4+ ions behave as S=3 /2
spins. Despite the bipartite nature of the lattice, and a large
antiferromagnetic Curie-Weiss constant �CW�−257 K, this
system shows no magnetic order down to T=0.4 K.18 It has
been suggested that this arises from frustration due to further
neighbor interactions.18 Neutron scattering studies would be
valuable to clarify whether such next neighbor couplings are
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present and whether they place this system in the regime of
fluctuating spiral order, leading to interesting spin liquid be-
havior over a wide range of temperatures, or if there is a
nematic transition with its specific heat signature being ob-
scured by background lattice contributions. Variants of this
system, where Mn4+ is replaced by V4+ �with S=1 /2� or by
Cr4+ �with S=1� would also be interesting to study, with the
V4+ material being a possible candidate for observing the
dimer solid discussed in this paper.

Among other honeycomb materials, InCu2/3V1/3O3 has
spin-1/2 Cu2+ ions nominally forming a honeycomb lattice19

with the nonmagnetic V5+ ions lying at the center of the
honeycomb hexagons. However, this system appears to have
strong structural disorder since V5+ and Cu2+ do not order
perfectly in this fashion. Ingredients for other such honey-
comb spin systems could be, for instance, Cu2+ ions within
CuO5 units arranged on the honeycomb lattice. In such a
trigonal bipyramidal crystal field environment of the oxy-
gens, the copper ion would then have a single hole, which is
located in the d3z2−r2 orbital. If the resulting S=1 /2 moments
have significant next neighbor interactions, they might also
be candidates to explore the physics discussed here.

Our study is also relevant to bilayer triangular antiferro-
magnets where the triangular layers have an AB stacking,
with antiferromagnetic exchange couplings present between
neighboring sites within each layer �J2� as well as between
neighboring sites across the two layers �J1�. In this case, each
layer acts as one sublattice of the honeycomb antiferromag-
net. Such a structure occurs in LuCuGaO4 which has copper/
gallium ions arranged randomly in a bilayer triangular lattice
leading to a strongly disordered spin liquid.20 A variant such
as HfCu2O4, if it could be synthesized in this structure, might
be an interesting material to study.

This paper is organized as follows. We begin, in Sec. II,
with a study of the classical model and its many degenerate
spiral ground states and follow it up with an analysis of spin
wave fluctuations and how it selects certain spiral ordered
ground states from this manifold. We argue that spin wave
fluctuations are likely to melt the order for S=1 /2 over a
wide range of J2 /J1. Section III contains a bond operator
approach to the energetics of the nematic �staggered� dimer
solid on the honeycomb lattice. Section IV describes the ef-
fect of thermal fluctuations on such a nematic state using
Landau theory as well as by direct Monte Carlo simulations
of the classical J1-J2 Heisenberg model. Section V contains a
discussion of earlier work on this model and related models
on other lattices, which share some of the features of the
honeycomb model we have studied.

II. SPIRAL ORDER FROM QUANTUM DISORDER

A. Degeneracy of coplanar classical ground states

To calculate the classical ground state energy we begin by
assuming coplanar spiral order on the lattice and parameter-
izing the spins on the two sublattices as

S1�r� = S�cos�Q · r�ẑ + sin�Q · r�x̂� �2�

S2�r� = − S�cos�Q · r + ��ẑ + sin�Q · r + ��x̂� , �3�

where Q is the spiral wave vector, r denotes sites on the
triangular lattice basis, and �+� is the angle between spins
on the different sublattices at the same site r. This notation is
chosen so that the Néel state corresponds to Q= �0,0� and
�=0, with spins aligned along �ẑ.

The classical ground-state energy per spin is given by

Ecl

N
= −

J1S2

2
�cos � + cos�� − Qb� + cos�� − Qa − Qb��

+ J2S2�cos Qa + cos Qb + cos�Qa + Qb�� , �4�

where â= x̂, and b̂=−x̂ /2+ ŷ	3 /2, are unit vectors depicted
in Fig. 1. Minimizing this classical energy, we find that the
minimum energy solution for J2 /J1�1 /6 corresponds to
Q�= �0,0� ,��=0, so that the Néel state is stable for this
range of frustration.

For J2 /J1�1 /6, the minimum energy solutions corre-
spond to Q� satisfying the relation

cos Qa
� + cos Qb

� + cos �Qa
� + Qb

�� =
1

2

� J1

2J2
�2

− 3 , �5�

while �� is determined completely by

sin �� = 2
J2

J1
�sin Qb

� + sin�Qa
� + Qb

��� , �6�

cos �� = 2
J2

J1
�1 + cos Qb

� + cos �Qa
� + Qb

��� . �7�

It is clear that the spiral wave vector is not uniquely fixed by
the above relations, as has been noted earlier.9,10 As shown in
Fig. 1, the classically degenerate solutions to Eq. �5� �which
we label Q�� form a closed contour9,10 around Q= �0,0� for
1 /6�J2 /J1�1 /2. For J2 /J1�1 /2, it forms closed contours
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FIG. 1. �Color online� Left panel: Real space basis vectors for
the honeycomb lattice. Right panel: Momentum space picture de-
picting the manifold of classically degenerate spiral wave vectors
for J2 /J1=0.3 �red, thin solid�, J2 /J1=0.5 �purple, dash-dotted�, and
J2 /J1=0.7 �green, dashed�. Also indicated by magenta �solid� dots
are the six distinct spiral wavevectors lying on this manifold which
are favored by quantum fluctuations. Black �thick solid� hexagon
indicates the first Brillouin zone of the lattice.
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around �Qa ,Qb�� � �2� /3,2� /3�. This regime does not ap-
pear to have been investigated in earlier work. In the limit
J2 /J1→�, where the two triangular sublattices of the honey-
comb lattice approximately decouple, Q�→ � �2� /3,2� /3�
which is the ordering wave vector of the 120° state on the
triangular lattice. We next examine how quantum or thermal
fluctuations select specific spin spirals from the manifold of
classically degenerate coplanar spirals discussed above.

B. Spin wave fluctuations

We calculate leading quantum corrections using Holstein-
Primakoff �HP� spin wave theory. We begin by defining new

spin operators S̃ via

�S̃�
x�r�

S̃�
y�r�

S̃�
z�r�

� = �cos 	��r� 0 − sin 	��r�
0 1 0

sin 	��r� 0 cos 	��r� ��
S�

x�r�
S�

y�r�
S�

z�r� � , �8�

where �=1,2 labels the sublattice, 	1�r�=Q ·r, and 	2�r�
=Q ·r+�. Re-expressing the Hamiltonian in terms of these
new spin operators and rewriting these spin operators in
terms of HP bosons, we arrive at the following Hamiltonian
which includes the leading spin wave correction to the clas-
sical ground state energy,

Hqu = Ecl + 2S �
k�0

�b�k
†Mkb�k − 2Ak� . �9�

Here b�†= �b1
†�k� ,b2

†�k� ,b1�−k� ,b2�−k��, �k�0 indicates that
the sum runs over half the first Brillouin zone �so that k and
−k are not both included�, and the Hamiltonian matrix Mk
takes the form

Mk =�
Ak Bk Ck Dk

Bk
� Ak Dk

� Ck

Ck Dk Ak Bk

Dk
� Ck Bk

� Ak

� , �10�

with explicit expressions for Ak-Dk given in Appendix A.
Diagonalizing this problem via a generalized Bogoliubov
transformation, we obtain the spin wave corrected ground
energy as

Equ = Ecl + 2S �
k�0

�
−�k� + 
+�k� − 2Ak� �11�

The eigenvalues 
��k� are given by


��k� = 	�k � �k �12�

where

�k = Ak
2 − Ck

2 + �Bk�2 − �Dk�2, �13�

�k = 	4�AkBk − CkDk�2 + �DkBk
� − BkDk

��2. �14�

For J2=0, it is known from quantum Monte Carlo simu-
lations that this model has long range Néel order.13 We have
checked that the Néel state energy for S=1 /2 is, for J2=0, in
good agreement with recent quantum Monte Carlo simula-
tions in the valence bond basis.21

The quantum correction to the classical ground state en-
ergy is responsible for selecting a unique quantum ground
state from the manifold of classically degenerate ground
states. Minimizing this energy correction over the classical
ground state manifold, Q�, we find the following results for
the spiral wave vector Q��, which is selected by quantum
fluctuations, with the resulting ��� being determined by Eqs.
�6� and �7�.

For 1 /6�J2 /J1�1 /2: The ground state is a spiral state
S1, with

Qb
�� = cos−1� J1

2

16J2
2 −

5

4
� , �15�

Qa
�� = 0. �16�

While the above relations specify a single spiral state, there
are a total of six symmetry related spirals, the other five
being obtained by 2� /6 rotations of the above Q��.

For 1 /2�J2 /J1��: The ground state is a different spiral
state S2, with

Qb
�� = � − cos−1� J1

4J2
+

1

2
� �17�

Qa
�� = 2 cos−1� J1

4J2
+

1

2
� . �18�

There are six symmetry related S2 spirals, the other five be-
ing obtained by 2� /6 rotations of the above Q��. The spin
wave correction to the ground state energy is shown in
Fig. 2.

C. Spiral order parameter “melting”

Spin wave fluctuations will tend to renormalize the spiral
order, and may render the spiral states unstable. We have
checked that the leading spin wave correction to the spiral
order parameter, given by
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FIG. 2. Plot of the spin wave correction to the energy per site
E= �Equ−Ecl� /N �in units of J1� as a function of J2 /J1.
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m = S −
1

N/2�
r

�S̃�
z�r�� =

1

N/2�
k

�b�
†�k�b��k�� , �19�

diverges as log�N� since the spin wave energy vanishes on
the entire classical manifold of degenerate spiral wave vec-
tors. This suggests that the spiral order will disappear for any
value of S. However, while such line zeroes of the dispersion
�Bose surfaces� are mandated by conservation laws in the
compressible phase of certain ring-exchange models,22 it is
not generic in this model, and the spin wave energy is ex-
pected to only have gapless points in momentum space cor-
responding to those wave vectors which are selected by
quantum fluctuations. We expect spin wave interactions, not
included at this stage, to gap out all other wave vectors and
stabilize the spiral order for large enough S. This requires a
higher order spin wave calculation �in powers of 1 /S� which
is beyond the scope of this paper. At this stage, we restrict
ourselves to noting that an exact diagonalization study10 of
the spin-1/2 model did not find any evidence of a tendency
toward magnetic ordering over a wide range of J2 /J1 where
the classical analysis predicts spiral order. Based on this, we
expect that while spiral order might be stabilized at large S
from spin wave interactions, this order is likely to “melt” for
small spin values, leading to other competing states.

III. FLUCTUATION INDUCED LATTICE
NEMATIC ORDER

We have seen that quantum fluctuations in a spin wave
expansion will tend to strongly suppress and, for small spin
values, perhaps disrupt the spiral order. In accordance with
the Mermin-Wagner theorem, thermal fluctuations are simi-
larly expected to melt the spiral order for any nonzero tem-
perature. While such quantum and thermal fluctuations may
restore spin rotational symmetry with exponentially decaying
spin correlations, there could be persisting broken symme-
tries in bilinears of the spin operator �which are obtained, for
instance, by taking dot products or cross products of the
single spin operators�. We begin by listing such bilinears in
order to see which of them could possibly survive the effect
of fluctuations that destroy magnetic long range order.

In the ordered spiral state, ignoring spin wave corrections
to the correlation functions, we find,

S1�r� � S1�r + R� = S2�r� � S2�r + R� = S2 sin�Q · R�ŷ ,

�20�

S1�r� � S2�r � R� = − S2 sin�Q · R � ��ŷ . �21�

Such bilinears therefore preserve lattice translational symme-
try but break the rotational invariance of the lattice. Since
solutions �Q ,�� and �−Q ,−�� are related by a global spin
rotation, and spin correlations are short-ranged at nonzero
temperature, such “vector chiralities” are also expected to
have exponentially decaying correlations at nonzero tem-
perature. By contrast, spin correlations such as

S1�r� · S1�r + R� = S2�r� · S2�r + R� = S2 cos�Q · R�
�22�

S1�r� · S2�r � R� − S2 cos�Q · R � �� �23�

are invariant under global spin rotations. These correlations
are clearly invariant under lattice translations, but they break
lattice rotational symmetry. Such a discrete broken symmetry
may survive even after fluctuations render the spiral state
unstable.

Let us focus on nearest-neighbor bonds and write out the
above spin correlations which are simply proportional to the
bond energies. We find, for the three bonds around a site on
sublattice-1,

S1�r� · S2�r� = − S2 cos � �24�

S1�r� · S2�r − b̂� = − S2 cos�Qb − �� �25�

S1�r� · S2�r − â − b̂� = − S2 cos�Qa + Qb − �� . �26�

Computing these bond energies in the spiral ground states
selected by quantum fluctuations, we find that two of the
three bond energies are equal while the third takes on a dif-
ferent value, so that the C3 rotational symmetry about a lat-
tice site is broken in the spiral states. This is the threefold
symmetry that we expect may still be broken even if spin
rotational symmetry is restored by quantum or thermal fluc-
tuations. Fluctuations about the spiral states could thus lead
to a lattice nematic state, which is invariant under lattice
translations but not lattice rotations. Below, we discuss a
quantum nematic VBS state as a candidate ground state for
S=1 /2, as well a classical nematic state induced by thermal
fluctuations for any spin value.

A. Nematic valence bond solid

Motivated by the above discussion, we consider the sim-
plest candidate for a lattice nematic ground state for S=1 /2
spins, which corresponds to forming a nematic VBS which
consists of singlet dimers on the honeycomb lattice as shown
in Fig. 3. Such a state has been proposed earlier over a small
window of J2 /J1 on the basis of a small system exact diago-
nalization study.10 An amusing way to view this VBS state,
as shown in Fig. 3, is to think of it as arising from coupling
together frustrated spin S=1 /2 J1-J2 chains. If we imagine
the interchain couplings being tuned to zero, this would lead
to decoupled Majumdar-Ghosh chains,23 which are known to
possess dimer order with a spin gap; in particular, the dimer-
ized state is the exact ground state of the single chain at J2
=0.5J1. The honeycomb lattice VBS might then be thought
of as arising from the decoupled chain limit upon incorpo-
rating interchain couplings while leaving the singlet gap in-
tact. The choice of which direction these chains run along is
completely arbitrary in the honeycomb limit, so that there are
three degenerate ground states that break the C3 lattice rota-
tional symmetry. We note that Heisenberg models with mul-
tispin interactions have been proposed for which this VBS
state is the exact ground state.24

In a state where such singlets are forced to occur on the
indicated bonds, the only excitations correspond to breaking
these singlets to form triplet excitations which can then form
a triplon band. To analyze the energetics and stability of such
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a state, we therefore use the bond operator formalism pro-
posed in Ref. 25. The details of the calculation are presented
in Appendix B.

Instead of working in the naïve basis of S=1 /2 operators
on every site, we switch to a basis of singlet and triplet
bosonic operators defined as

s†�0� =
1
	2

��↑↓� − �↓↑�� �27�

tx
†�0� =

− 1
	2

��↑↑� − �↓↓�� �28�

ty
†�0� =

i
	2

��↑↑� + �↓↓�� �29�

tz
†�0� =

1
	2

��↑↓� + �↓↑�� �30�

on the dark �dimer� bonds in Fig. 3, together with a local
constraint

sr
†sr + �

�=x,y,z
tr,�
† tr,� = 1. �31�

Here � is summed over x ,y ,z, with t� being the three triplon
operators on the bond at r. �Repeated Greek indices hence-
forth denote summation over x ,y ,z.� To simplify the calcu-
lation, we satisfy this constraint on average, rather than lo-
cally. We assume the singlet operators to be condensed,
allowing us to replace the operator si with a number s̄. The
excitations are the triplet operators, and the terms of the
Hamiltonian may now be organized in order of the number
of triplet operators. The Hamiltonian in momentum space,
keeping only terms up to quadratic order, is

HBO
�2� = −

3N

4
J1s̄2 − N�s̄2 + N� − 3 �

k�0
Gk

+ �
k�0

�t�
†�k�t��− k��
Gk Fk

Fk
� Gk


 t��k�
t�
†�− k�  , �32�

where � is a chemical potential that has been introduced to
satisfy the constraint in Eq. �31�. The matrix entries are given
by

Gk =
J1

4
− � −

s̄2

4
J1��k + �−k� +

s̄2

4
J2��k + �−k�

Fk = −
s̄2

4
J1��k + �−k� + J2

s̄2

4
��k + �−k� ,

where

�k = e−ikb + e−i�kb+ka�

�k = 2�cos�ka� + cos�kb� + cos�ka + kb�� .

Diagonalizing the Hamiltonian by a bosonic Bogoliubov
transformation gives the dispersion of the eigenmodes to be

Ek = 	Gk
2 − �Fk�2. �33�

The energy of this state is plotted as the green dashed line in
Fig. 4.

While this quadratic theory gives a consistent picture of
our lattice nematic state, higher order terms may lower its
energy significantly. We proceed to take these into account
by means of a self consistent Hartree-Fock approach. This
approach has been compared recently, for a star lattice
Heisenberg antiferromagnet, with Gutzwiller projected varia-
tional wave functions27 and exact diagonalization studies26

and shown to provide a good description of the energetics of
valence bond solid states on the star lattice.27 We begin by
noting that the terms of cubic order in the triplet operators do
not contribute, since we work with the assumption that the

d 1∆,

d2, ∆2

d2, ∆2

âb
^

��������������������������������

���������������������������������������������������

����������������������������������

����������������������������������

����������������������������������

���������������������������������������������������

���������������������������������������������������

������������������������������������������������

���������������������������������������������������

���������������������������������������������������

������������������������������������������������

����������������������������������

����������������������������������

����������������������������������

��������������������������������

����������������������������������

���������������������������������������������������

1

���������������������������������������������������

FIG. 3. Sketch of the valence bond solid state with staggered
dimer order which breaks the honeycomb lattice rotational symme-
try but preserves spin rotational and lattice translational symme-

tries. â , b̂ denote basis �unit� vectors of the triangular lattice formed
by the dimer bonds. d1,2 and 1,2 indicate Hartree-Fock-Bogoliubov
mean field parameters in the bond operator mean field theory �see
text for details�. Dashed line indicates the set of spins which might
be viewed as forming one dimensional dimerized chains which are
coupled in the transverse direction.
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FIG. 4. �Color online� Ground state energy �in units of J1� as a
function of J2 /J1. The red �solid� line is the energy of the spiral
state including leading order spin wave corrections, the green
�dashed� line is the nematic VBS energy up to quadratic order in
triplon operators, and the blue �dash-dotted� line indicates nematic
VBS energy up to quartic order in triplon operators.
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triplon operators themselves are not condensed. The quartic
part of the Hamiltonian is given by

HBO
�4� =

− 1

4N
�

k,k�,q

���������J1�k−k� + J2�k−k��

�t�
†�k + q�t��k� + q�t�

†�k��t��k� , �34�

where ���� is the permutation symbol. Guided by the sym-
metry of the nematic phase, we postulate the following real-
space order parameters:

d1 =
1

3
�tr,�

† tr+�1,�� �35�

d2 =
1

3
�tr,�

† tr+�2,�� �36�

1 =
1

3
�tr,�tr+�1,�� �37�

2 =
1

3
�tr,�tr+�2,�� , �38�

where �1= � â, and �2= � b̂ , � �â+ b̂�. These are defined on
bonds as shown in Fig. 3. The above are the only operators
that couple to s̄2 at quadratic level.

We calculate these order parameters self-consistently, and
thereby obtain the energy of the nematic VBS, having ac-
counted for quartic terms. This is plotted in Fig. 4 as the blue
�dot-dashed� line. At quadratic level, the nematic state is en-
ergetically favorable over the spiral over a small window
near J2�0.35J1. Although, we have not considered interac-
tions between spin wave modes, it is nevertheless, it is en-
couraging that the quartic level energy in the bond operator
formalism is lower than the spin wave energy for J2
�0.25J1, except for a small window around J2=0.5J1. Since
the spiral order is anyway likely to be suppressed by fluctua-
tions, our results are quite suggestive of such nematic VBS
order being present over a wide window of frustration. At
large J2 /J1, we expect competing states might emerge which
are descendants of spin liquid states on the triangular
lattice28—this needs further investigation.

We note that this bond operator formalism does not take
into account the fluctuations of the singlets themselves; the
kinetic energy lowering from such resonating singlet valence
bonds might possibly favor 	3�	3 plaquette dimer order
which also breaks lattice translation symmetry4,29—such
states can be accessed within a Schwinger boson formalism
and might be relevant in the vicinity of the point where the
Néel order is lost.

B. Thermal fluctuations: Landau theory

The spiral states S1 and S2, obtained from including spin
fluctuations at large S, can only be stable at zero temperature.
At any nonzero temperature, since our system is two dimen-
sional, spin rotational symmetry will be immediately re-
stored. As earlier discussed, the simplest ordering would in-

volve nearest-neighbor bilinears of the spin operators, which
may break lattice rotational symmetry. Motivated by earlier
work on such lattice nematics and quantum dimer models,
we define a local complex order parameter

��r� = �S1�r� · S2�r�� + ��S1�r� · S2�r − b̂��

+ �2�S1�r� · S2�r − â − b̂�� , �39�

on sites of sublattice 1, where �=exp�i2� /3�. Since two of
the bond energies are equal in the ground state, ��r�
��1,� ,�2� in the three ground states, so that �3�r��1. This
order parameter is invariant under translations even in the
spiral state. Under an anticlockwise 2� /3 rotation about a
site on sublattice 1, we have �→��. Finally, reflections
about axes running along the bonds can be shown to lead to
�→��. Based on these symmetry considerations, the finite
temperature classical lattice nematic is expected to be de-
scribed by a Landau free energy functional of the form

F =� d2r�m���r��2 + u���r��4 + 
����r��2

+ w��3�r� + ��3�r��� , �40�

which is equivalent to a three-state clock model �or equiva-
lently, the three-state Potts model� if we assume that ampli-
tude is fixed. We therefore expect the classical model �as
well as possibly the S=1 /2 model� to exhibit, upon warming
up from T=0, a finite temperature transition from a lattice
nematic into an ordinary paramagnet, with this transition be-
ing in the universality class of the three-state Potts model in
two-dimensional �2D�. �Of course, these arguments do not
rule out the possibility of a first-order transition.�

C. Thermal fluctuations: Monte Carlo study

We have carried out Monte Carlo simulations of the clas-
sical J1-J2 Heisenberg model in order to numerically explore
the nematic-paramagnet phase transition. Using a combina-
tion of single-spin Metropolis moves and energy conserving
�over-relaxed� moves, we have computed the Binder cumu-
lant of the order parameter,

B = 1 −
����4�

3����2�2 , �41�

where �=�r��r� is a complex scalar, and the susceptibility,

� =
1

NT
����2�� − �����2� , �42�

for the classical Heisenberg model for various J2 /J1. Figure
5 shows the Binder cumulant as a function of temperature
obtained on various system sizes �N=L2 with L=36–72� for
J2 /J1=0.8 by averaging over 106–107 configurations. These
exhibit a crossing point at Tc /J1S2�0.1515�5� indicating a
continuous thermal phase transition, with B�Tc��0.63.

In addition, as seen from Fig. 6, the peak of the suscepti-
bility �at J2 /J1=0.8� increases with system size. Based on the
finite size scaling of this peak height, ��L�/�, we find � /�
�1.68�8�. The order parameter ����� at Tc scales with sys-
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tem size as L−�/�, with � /��0.14�2�. Finally, the shift in the
susceptibility peak with system size is expected to scale as
T��L−1/� from which we find 1 /��1.25�9�. These results
for the exponents are reasonably consistent with a three-state
Potts model transition for which the exact exponents are
known30 to be �=1 /9, �=13 /9, and �=5 /6; these imply
� /��1.733, � /��0.133, and 1 /�=1.2. The critical Binder
cumulant B�Tc� also seems consistent with earlier numerical
work on the Potts model.31 We have also computed the spe-
cific heat of this model, and, as seen in the inset of Fig. 6, it
shows a clear peak at the transition point located from the
Binder cumulant calculation. For reasons we do not com-
pletely understand, the specific heat does not exhibit clear
finite size scaling over the system sizes explored. It is pos-
sible that the thermally fluctuating spin wave modes and
their interaction with the nematic order parameter may make

it difficult to extract the finite size scaling of the specific heat
singularity for system sizes we have studied. We are carrying
out careful numerical studies of this model on larger system
sizes in order to understand this issue.

IV. RELATION TO PREVIOUS WORK

Earlier investigations of the honeycomb lattice model
have focused on the spin wave selection of various spiral
states.9,10 Our results are in line with these studies—it ap-
pears that specific spin spirals are selected at O�1 /S� in a
spin wave calculation, but the resulting order is likely to
‘melt’ for S=1 /2 over a wide range of J2 /J1. An exact di-
agonalization study10 of the spin S=1 /2 model has suggested
that nematic order with breaking of C3 rotational symmetry
could appear in the vicinity of J2=0.4–0.5J1, and this order
has also been guessed from a study of Berry phase effects in
a nonlinear sigma model formulation.15 Our bond operator
calculations lend support to this claim, and also suggest that
this nematic dimer order may persist over a wide range of
J2 /J1.

The idea that isotropic Heisenberg models may have such
nematic orders at finite temperature is well known from early
work on the square lattice J1-J2 model.3 For J2�J1 /2, the
classical �S=�� ground state of this model on the square
lattice is Néel ordered. For J2�J1 /2, by contrast, there is a
large set of classically degenerate ground states in which the
two sublattices are individually perfectly Néel ordered with
an arbitrary relative angle between the two sublattices.
Within this classical manifold, quantum fluctuations at
O�1 /S� select collinear ground states2 with ordering wave
vectors Q= �� ,0� or �0,��. At any nonzero temperature, this
model exhibits exponentially decaying spin correlations,
consistent with the Mermin-Wagner theorem, but the broken
lattice rotational symmetry associated with these collinear
ground states survives at low temperature. Upon further heat-
ing, this ‘lattice nematic’, which breaks the C4 rotational
symmetry of the square lattice down to C2, converts into the
high temperature paramagnetic phase via an Ising
transition.3,6 Despite a large number of numerical
studies,4,5,7,8 however, the ground-state phase diagram of this
square lattice spin-1/2 model appears to not to be satisfacto-
rily understood.

The relation between spiral magnetic states and nematic
orders has also been explored in the context of the J1-J3
model on the square lattice.32 In this case, there is a Néel to
spiral transition for J3�J1 /4, which is a Lifshitz transition
similar to the case we have studied. Melting this spiral ther-
mally leads to an Ising nematic similar to the square lattice
J1-J2 model. The main differences of our model with this
case are: �i� The spiral wave vector is unique �modulo reflec-
tions� in the classical square lattice J1-J3 model unlike the
line degeneracy we encounter on the honeycomb lattice; �ii�
the nematic-paramagnet transition in the square lattice J1-J3
model is an Ising transition; �iii� unlike on the honeycomb
lattice, there is no simple quantum analog of the classical
nematic in the square lattice model. It may be more useful to
consider possible analogies of the honeycomb model with
the J1-J2-J3 model on the square lattice which has been stud-
ied in recent work.33
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Some features of the honeycomb model, such as a highly
degenerate set of classical spiral states and the resulting spi-
ral selection by fluctuation effects, bear similarities with
studies on the diamond lattice J1-J2 model,34,35 which were
motivated by insulating spinel compounds such as MnSc2S4,
Co3O4, and CoRh2O4. We note, in passing, that the issue of
spiral order and its connection to lattice nematicity also
arises in the context of itinerant systems. In particular, such
spiral melting has been proposed as one mechanism36 for the
observed nematic transport37 in Sr3Ru2O7 at intermediate
magnetic fields, although there are competing theoretical
proposals38 for the observed nematic order.

V. SUMMARY

We have studied the honeycomb lattice J1-J2 Heisenberg
model. We have seen that the classical model supports a
one-parameter family of degenerate spin spiral states, of
which specific spin spirals are selected out by quantum fluc-
tuations. For general spin values, we expect the spiral order
to be strongly suppressed but robust nematic order to sur-
vive. For S=1 /2, spin fluctuations are likely strong enough
to melt the spiral order leading to a spin gapped nematic
dimer solid as indicated from our bond operator calculations.
We have shown that the classical model, and possibly also
the dimer solid, are connected to the high temperature para-
magnetic phase via a three-state Potts model transition. Neu-
tron scattering experiments would be valuable to test for
fluctuating spiral order at finite temperatures—in this regime,
the equal time structure factor exhibits peaks on the spiral
contours in Fig. 1 as the system thermally explores the vari-
ous �nearly� degenerate spirals. This may allow a determina-
tion of the further neighbor couplings which frustrate Néel
order. Further work is necessary to determine if interesting
gapless spin liquids emerge as candidate ground states for
this model over some regime of frustration as has been re-
cently proposed for other frustrated quantum magnets.39–44

The other interesting possibility is the existence of gapped
spin liquids as have been recently uncovered in numerical
studies in the insulating state of the honeycomb lattice Hub-
bard model.45 The model we have studied appears to be di-
rectly applicable as an effective spin Hamiltonian �with
J2 /J1�0.1� in the insulating phase of the Hubbard model for
moderate values of repulsion. Finally, our results are relevant
to honeycomb and bilayer triangular magnets; we hope our
work stimulates further experiments on the Bi3M4O12�NO3�
family of materials, and other compounds which might real-
ize this model.
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APPENDIX A: MATRIX ELEMENTS FOR THE
HOLSTEIN-PRIMAKOFF HAMILTONIAN

The explicit expressions for the matrix elements of the
Holstein-Primakoff Hamiltonian in Eq. �10� are given by

Ak =
J1

2
�cos � + cos�� − Qb� + cos�� − Qa − Qb��

− J2�cos Qa + cos Qb + cos�Qa + Qb��

+
J2

2
��cos Qa + 1�cos ka + �cos Qb + 1�cos kb

+ �cos�Qa + Qb� + 1�cos�ka + kb�� , �A1�

Bk =
J1

4
��cos � − 1� + �cos�� − Qb� − 1�e−ikb

+ �cos�� − Qa − Qb� − 1�e−i�ka+kb�� �A2�

Ck � �k + �k
� �A3�

�k =
J2

4
��cos�Qa� − 1�eika + �cos�Qb� − 1�e−ikb

+ �cos�Qa + Qb� − 1�ei�ka+kb�� �A4�

Dk =
J1

4
��cos � + 1� + �cos�� − Qb� + 1�e−ikb

+ �cos�� − Qa − Qb� + 1�e−i�ka+kb�� . �A5�

APPENDIX B: TRIPLON CALCULATION FOR LATTICE
NEMATIC STATE

We work with a basis of singlet and triplet operators that
are centered on bonds indicated in Fig. 3. In terms of the
bond operators defined in the text, the spin operator on any
site can be written as

S�
��r� =

1

2
f����sr

†tr,� + tr,�
† sr� −

i

2
����tr,�

† tr,� �B1�

Here, the index � indicates the sublattice. The factor f���
takes the value +1 on sublattice 1 and −1 on sublattice 2. r is
summed over sites of the bond-centered triangular lattice.

We now consider the singlets to have condensed, giving
us a nematic state. Between sites that are connected by a
bond, we have

S1�r� . S2�r� = −
3

4
s̄2 +

1

4�
�

tr,�
† tr,�. �B2�

For sites that are not connected by a bond, we have

S��r� . S���r�� = f���f����
s̄2

4
�tr,�

† + tr,���tr�,�
† + tr�,��

−
is̄

4
�����f����tr,�

† + tr,��tr�,�
† tr�,�

+ tr,�
† tr,�f�����tr�,�

† + tr�,���
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+
�− 1�

4
��������tr,�

† tr,�tr�,�
† tr�,�. �B3�

To enforce the constraint on the bond operators, we rewrite
the Hamiltonian as

H − ��
r

�s̄2 + tr,�
† tr,� − 1� , �B4�

where H is the original spin Hamiltonian in Eq. �1�. � is now
tuned so that the constraint is satisfied on average. Keeping
terms to quadratic order in the t operators, this Hamiltonian
may be rewritten as Eq. �32�, and diagonalized by a Bogo-
liubov transformation. For fixed J2 /J1, we choose the value
of s̄ that minimizes energy.

The term that is quartic in triplon operators is given by
Eq. �34�. This can be decoupled in hopping and pairing chan-
nels, using the order parameters defined in Eq. �38�. This
modifies the coefficients of the quadratic Hamiltonian of Eq.
�32� as follows

Gk
�4� = Gk +

J1

2
d2��k + �−k� + J2d2��k + �−k� + 2J2d1 cos�ka�

�B5�

Fk
�4� = Fk −

J1

2
2��k + �−k� − J22��k + �−k� − 2J21 cos�ka� .

�B6�

In addition, the Hamiltonian acquires a constant contribution
given by

�E�4� = − 3J1N�d2
2 − �2�2� − 6J2N�d2

2 − �2�2�

− 3J2N�d1
2 − �1�2� . �B7�

The Hamiltonian is solved by a Bogoliubov transformation.
For fixed s̄, the d and  order parameters are determined
self-consistently, while � is tuned to make sure the constraint
on bond operators is satisfied. s̄ is chosen to minimize the
ground state energy for every J2 /J1.

1 L. Balents, Nature �London� 464, 199 �2010�; A. P. Ramirez,
Nat. Phys. 4, 442 �2008�; P. A. Lee, Rep. Prog. Phys. 71,
012501 �2008�; R. Moessner and A. P. Ramirez, Phys. Today 59
�2�, 24 �2006�; G. Misguich and C. Lhuillier, in Frustrated Spin
Systems, edited by H. T. Diep �World Scientific, New York,
2005�.

2 C. L. Henley, Phys. Rev. Lett. 62, 2056 �1989�.
3 P. Chandra, P. Coleman, and A. I. Larkin, Phys. Rev. Lett. 64, 88

�1990�.
4 N. Read and Subir Sachdev, Phys. Rev. Lett. 62, 1694 �1989�;

N. Read and S. Sachdev, Phys. Rev. B 42, 4568 �1990�.
5 L. Capriotti and S. Sorella, Phys. Rev. Lett. 84, 3173 �2000�; L.

Capriotti, F. Becca, A. Parola, and S. Sorella, ibid. 87, 097201
�2001�; F. Becca, L. Capriotti, A. Parola, and S. Sorella, Phys.
Rev. B 76, 060401�R� �2007�.

6 C. Weber, L. Capriotti, G. Misguich, F. Becca, M. Elhajal, and F.
Mila, Phys. Rev. Lett. 91, 177202 �2003�.

7 J. Sirker, Z. Weihong, O. P. Sushkov, and J. Oitmaa, Phys. Rev.
B 73, 184420 �2006�.

8 R. Darradi, O. Derzhko, R. Zinke, J. Schulenburg, S. E. Kruger,
and J. Richter, Phys. Rev. B 78, 214415 �2008�.

9 E. Rastelli, A. Tassi, and L. Reatto, Physica B & C 97, 1 �1979�.
10 J. B. Fouet, P. Sindzingre, and C. Lhuillier, Eur. Phys. J. B 20,

241 �2001�.
11 J. Oitmaa and D. D. Betts, Can. J. Phys. 56, 897 �1978�.
12 S. Katsura, T. Ide, and Y. Morita, J. Stat. Phys. 42, 381 �1986�.
13 J. D. Reger, J. A. Riera, and A. P. Young, J. Phys.: Condens.

Matter 1, 1855 �1989�.
14 J. Oitmaa, C. J. Hamer, and Zheng Weihong, Phys. Rev. B 45,

9834 �1992�.
15 T. Einarsson and H. Johannesson, Phys. Rev. B 43, 5867 �1991�.
16 A. Mattsson, P. Fröjdh, and T. Einarson, Phys. Rev. B 49, 3997

�1994�.
17 K. Takano, Phys. Rev. B 74, 140402�R� �2006�.
18 O. Smirnova, M. Azuma, N. Kumada, Y. Kusano, M. Matsuda,

Y. Shimakawa, T. Takei, Y. Yonesaki, and N. Kinomura, J. Am.
Chem. Soc. 131, 8313 �2009�; S. Okubo, F. Elmasry, W. Zhang,
M. Fujisawa, T. Sakurai, H. Ohta, M. Azuma, O. A. Sumirnova,
and N. Kumada, J. Phys.: Conf. Ser. 200, 022042 �2010�.

19 A. Möller, U. Löw, T. Taetz, M. Kriener, G. André, F. Damay, O.
Heyer, M. Braden, and J. A. Mydosh, Phys. Rev. B 78, 024420
�2008�; M. Yehia, E. Vavilova, A. Möller, T. Taetz, U. Löw, R.
Klingeler, V. Kataev, and B. Büchner, ibid. 81, 060414�R�
�2010�.

20 R. J. Cava, A. P. Ramirez, Q. Huang, and J. J. Krajewski, J. Solid
State Chem. 140, 337 �1998�; S. Calder, S. R. Giblin, D. R.
Parker, P. P. Deen, C. Ritter, J. R. Stewart, and T. Fennell,
arXiv:1002.0975 �unpublished�.

21 Z. Noorbakhsh, F. Shahbazi, S. A. Jafari, and G. Baskaran, J.
Phys. Soc. Jpn. 78, 054701 �2009�.

22 A. Paramekanti, L. Balents, and M. P. A. Fisher, Phys. Rev. B
66, 054526 �2002�.

23 C. K. Majumdar and D. K. Ghosh, J. Math. Phys. 10, 1388
�1969�; 10, 1399 �1969�; F. D. M. Haldane, Phys. Rev. B 25,
4925 �1982�.

24 R. Kumar, D. Kumar, and B. Kumar, Phys. Rev. B 80, 214428
�2009�.

25 S. Sachdev and R. N. Bhatt, Phys. Rev. B 41, 9323 �1990�.
26 J. Richter, J. Schulenburg, A. Honecker, and D. Schmalfuss,

Phys. Rev. B 70, 174454 �2004�.
27 B.-J. Yang, A. Paramekanti, and Y. B. Kim, Phys. Rev. B 81,

134418 �2010�.
28 F. Wang and A. Vishwanath, Phys. Rev. B 74, 174423 �2006�.
29 R. Moessner, S. L. Sondhi, and P. Chandra, Phys. Rev. B 64,

144416 �2001�.
30 R. J. Baxter, Exactly Solved Models in Statistical Mechanics

�Academic, London, 1982�.
31 Z. F. Wang and B. W. Southern, Phys. Rev. B 68, 094419

�2003�.
32 L. Capriotti and S. Sachdev, Phys. Rev. Lett. 93, 257206 �2004�.

SPIRAL ORDER BY DISORDER AND LATTICE NEMATIC… PHYSICAL REVIEW B 81, 214419 �2010�

214419-9

http://dx.doi.org/10.1038/nature08917
http://dx.doi.org/10.1038/nphys978
http://dx.doi.org/10.1088/0034-4885/71/1/012501
http://dx.doi.org/10.1088/0034-4885/71/1/012501
http://dx.doi.org/10.1063/1.2186278
http://dx.doi.org/10.1063/1.2186278
http://dx.doi.org/10.1103/PhysRevLett.62.2056
http://dx.doi.org/10.1103/PhysRevLett.64.88
http://dx.doi.org/10.1103/PhysRevLett.64.88
http://dx.doi.org/10.1103/PhysRevLett.62.1694
http://dx.doi.org/10.1103/PhysRevB.42.4568
http://dx.doi.org/10.1103/PhysRevLett.84.3173
http://dx.doi.org/10.1103/PhysRevLett.87.097201
http://dx.doi.org/10.1103/PhysRevLett.87.097201
http://dx.doi.org/10.1103/PhysRevB.76.060401
http://dx.doi.org/10.1103/PhysRevB.76.060401
http://dx.doi.org/10.1103/PhysRevLett.91.177202
http://dx.doi.org/10.1103/PhysRevB.73.184420
http://dx.doi.org/10.1103/PhysRevB.73.184420
http://dx.doi.org/10.1103/PhysRevB.78.214415
http://dx.doi.org/10.1016/0378-4363(79)90002-0
http://dx.doi.org/10.1007/s100510170273
http://dx.doi.org/10.1007/s100510170273
http://dx.doi.org/10.1007/BF01127717
http://dx.doi.org/10.1088/0953-8984/1/10/007
http://dx.doi.org/10.1088/0953-8984/1/10/007
http://dx.doi.org/10.1103/PhysRevB.45.9834
http://dx.doi.org/10.1103/PhysRevB.45.9834
http://dx.doi.org/10.1103/PhysRevB.43.5867
http://dx.doi.org/10.1103/PhysRevB.49.3997
http://dx.doi.org/10.1103/PhysRevB.49.3997
http://dx.doi.org/10.1103/PhysRevB.74.140402
http://dx.doi.org/10.1021/ja901922p
http://dx.doi.org/10.1021/ja901922p
http://dx.doi.org/10.1088/1742-6596/200/2/022042
http://dx.doi.org/10.1103/PhysRevB.78.024420
http://dx.doi.org/10.1103/PhysRevB.78.024420
http://dx.doi.org/10.1103/PhysRevB.81.060414
http://dx.doi.org/10.1103/PhysRevB.81.060414
http://dx.doi.org/10.1006/jssc.1998.7896
http://dx.doi.org/10.1006/jssc.1998.7896
http://arXiv.org/abs/arXiv:1002.0975
http://dx.doi.org/10.1143/JPSJ.78.054701
http://dx.doi.org/10.1143/JPSJ.78.054701
http://dx.doi.org/10.1103/PhysRevB.66.054526
http://dx.doi.org/10.1103/PhysRevB.66.054526
http://dx.doi.org/10.1063/1.1664978
http://dx.doi.org/10.1063/1.1664978
http://dx.doi.org/10.1103/PhysRevB.25.4925
http://dx.doi.org/10.1103/PhysRevB.25.4925
http://dx.doi.org/10.1103/PhysRevB.80.214428
http://dx.doi.org/10.1103/PhysRevB.80.214428
http://dx.doi.org/10.1103/PhysRevB.41.9323
http://dx.doi.org/10.1103/PhysRevB.70.174454
http://dx.doi.org/10.1103/PhysRevB.81.134418
http://dx.doi.org/10.1103/PhysRevB.81.134418
http://dx.doi.org/10.1103/PhysRevB.74.174423
http://dx.doi.org/10.1103/PhysRevB.64.144416
http://dx.doi.org/10.1103/PhysRevB.64.144416
http://dx.doi.org/10.1103/PhysRevB.68.094419
http://dx.doi.org/10.1103/PhysRevB.68.094419
http://dx.doi.org/10.1103/PhysRevLett.93.257206


33 P. Sindzingre, N. Shannon, and T. Momoi, J. Phys.: Conf. Ser.
200, 022058 �2010�.

34 D. Bergman, J. Alicea, E. Gull, S. Trebst, and L. Balents, Nat.
Phys. 3, 487 �2007�.

35 J.-S. Bernier, M. J. Lawler, and Y. B. Kim, Phys. Rev. Lett. 101,
047201 �2008�.

36 A. M. Berridge, A. G. Green, S. A. Grigera, and B. D. Simons,
Phys. Rev. Lett. 102, 136404 �2009�; A. M. Berridge, S. A.
Grigera, B. D. Simons, and A. G. Green, Phys. Rev. B 81,
054429 �2010�.

37 R. A. Borzi, S. A. Grigera, J. Farrell, R. S. Perry, S. J. S. Lister,
S. L. Lee, D. A. Tennant, Y. Maeno, and A. P. Mackenzie, Sci-
ence 315, 214 �2007�.

38 H.-Y. Kee and Y. B. Kim, Phys. Rev. B 71, 184402 �2005�; S.
Raghu, A. Paramekanti, E-.A. Kim, R. A. Borzi, S. A. Grigera,
A. P. Mackenzie, and S. A. Kivelson, ibid. 79, 214402 �2009�;

W.-C. Lee and C. Wu, ibid. 80, 104438 �2009�; C. M. Puetter, J.
G. Rau, and H.-Y. Kee, ibid. 81, 081105�R� �2010�; M. H. Fis-
cher and M. Sigrist, ibid. 81, 064435 �2010�.

39 O. I. Motrunich, Phys. Rev. B 72, 045105 �2005�.
40 Y. Ran, M. Hermele, P. A. Lee, and X.-G. Wen, Phys. Rev. Lett.

98, 117205 �2007�.
41 O. Ma and J. B. Marston, Phys. Rev. Lett. 101, 027204 �2008�.
42 Y. Zhou, P. A. Lee, T.-K. Ng, and F.-C. Zhang, Phys. Rev. Lett.

101, 197201 �2008�.
43 M. J. Lawler, A. Paramekanti, Y. B. Kim, and L. Balents, Phys.

Rev. Lett. 101, 197202 �2008�.
44 T. Grover, N. Trivedi, T. Senthil, and P. A. Lee, arXiv:0907.1710

�unpublished�.
45 Z. Y. Meng, T. C. Lang, S. Wessel, F. F. Assaad, and A. Mura-

matsu, Nature �London� 464, 847 �2010�.

MULDER et al. PHYSICAL REVIEW B 81, 214419 �2010�

214419-10

http://dx.doi.org/10.1088/1742-6596/200/2/022058
http://dx.doi.org/10.1088/1742-6596/200/2/022058
http://dx.doi.org/10.1038/nphys622
http://dx.doi.org/10.1038/nphys622
http://dx.doi.org/10.1103/PhysRevLett.101.047201
http://dx.doi.org/10.1103/PhysRevLett.101.047201
http://dx.doi.org/10.1103/PhysRevLett.102.136404
http://dx.doi.org/10.1103/PhysRevB.81.054429
http://dx.doi.org/10.1103/PhysRevB.81.054429
http://dx.doi.org/10.1126/science.1134796
http://dx.doi.org/10.1126/science.1134796
http://dx.doi.org/10.1103/PhysRevB.71.184402
http://dx.doi.org/10.1103/PhysRevB.79.214402
http://dx.doi.org/10.1103/PhysRevB.80.104438
http://dx.doi.org/10.1103/PhysRevB.81.081105
http://dx.doi.org/10.1103/PhysRevB.81.064435
http://dx.doi.org/10.1103/PhysRevB.72.045105
http://dx.doi.org/10.1103/PhysRevLett.98.117205
http://dx.doi.org/10.1103/PhysRevLett.98.117205
http://dx.doi.org/10.1103/PhysRevLett.101.027204
http://dx.doi.org/10.1103/PhysRevLett.101.197201
http://dx.doi.org/10.1103/PhysRevLett.101.197201
http://dx.doi.org/10.1103/PhysRevLett.101.197202
http://dx.doi.org/10.1103/PhysRevLett.101.197202
http://arXiv.org/abs/arXiv:0907.1710
http://dx.doi.org/10.1038/nature08942

