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We describe an efficient algorithm to compute forces in quantum Monte Carlo using adjoint algorith-
mic differentiation. This allows us to apply the space warp coordinate transformation in differential
form, and compute all the 3M force components of a system with M atoms with a computational
effort comparable with the one to obtain the total energy. Few examples illustrating the method for an
electronic system containing several water molecules are presented. With the present technique, the
calculation of finite-temperature thermodynamic properties of materials with quantum Monte Carlo
will be feasible in the near future. © 2010 American Institute of Physics. [doi:10.1063/1.3516208]

I. INTRODUCTION

In the last few years, we have seen a remarkable progress
in the ab initio simulation of realistic electronic systems based
on first principles quantum mechanics. Despite the power
of density functional theory (DFT), with standard local den-
sity approximation (LDA) and generalized gradient approxi-
mation (GGA) functionals, much effort has been devoted to
schemes that are able to describe more accurately the elec-
tronic correlations. This is because several materials—such as
high temperature superconductors—are indeed strongly cor-
related. Furthermore, long-range dispersive forces may be ex-
tremely important even in simple and fundamental materials,
like water, and are notoriously difficult to describe with stan-
dard DFT. A promising many-body approach, alternative to
DFT, is the so called quantum Monte Carlo (QMC) method,
allowing one to include the electronic correlations by means
of a highly accurate many-body wave function (WF), sampled
by a statistical method. All the basic ingredients of the elec-
tronic correlation are described explicitly within this frame-
work. This is particularly appealing because its computational
cost scales rather well with the number of electrons N , with a
modest power, e.g., N 3 or N 4. Due to this important property,
QMC is very promising for large scale calculations especially
when compared with standard post-Hartree–Fock methods. In
fact, these methods are also capable to describe rather well
the electronic correlations. However, they typically require a
larger computational cost: from polynomial in the range be-
tween N 4 and N 7, to exponential complexity in full configu-
ration interaction schemes.

Despite the clear advantage of QMC for the accurate
electronic simulation of materials containing a large number
of atoms, its application has been mainly limited to total en-
ergy calculations. In particular, no general method to calculate
ionic forces, which remains efficient even for a large number
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of atoms M , is available so far. Indeed, many-body forces usu-
ally lead to cumbersome expressions, whose evaluation can
be done at present only by means of complicated and com-
putationally expensive algorithms. For this reason, such cal-
culations have been implemented so far only for particularly
simple cases. For instance, it was recently possible1 to simu-
late ∼100 hydrogen atoms in the low temperature, high pres-
sure phase, with the calculation of the ionic forces based on
efficient strategies to work with finite variance expressions.2, 3

Unfortunately, this route cannot be followed in general be-
cause it works very efficiently only for light atoms.

On the other hand, an accurate algorithm for the calcu-
lation of forces that is in principle efficient also with heavy
atoms, and with the use of pseudopotentials, was introduced
a long time ago.4 This method is based on the so called space
warp coordinate transformation (SWCT), allowing a zero-
variance expression—i.e., maximum efficiency in QMC—
even for isolated atoms. We believe that, without a highly ef-
fective variance reduction scheme in the calculation of forces,
such as SWCT, there is no hope to extend the applicabil-
ity of QMC to structural optimization of complex and cor-
related materials, or to perform ab initio molecular dynamics
simulation at finite temperature. However, even when using
this promising approach, or others based on the zero-variance
principle,3 standard implementations, e.g., based on finite-
difference approximations of the derivatives appearing in the
expressions for the ionic forces, are still computationally very
expensive—to the point of being unfeasible for a large num-
ber of atoms.

In this work, we propose a simple strategy for the ef-
ficient calculation of the ionic forces—and generally of any
arbitrarily complicated derivative of the QMC total energy—
by using adjoint algorithmic differentiation (AAD). We will
show that this method will allow us to achieve two very im-
portant targets:

(1) the numerical implementation of all the energy deriva-
tives will be possible in a straightforward way without
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any reference to complicated expressions, for instance,
the terms shown in Ref. 5, when pseudopotentials are
used to remove the effect of core electrons;

(2) more importantly, the calculation of an arbitrarily large
number of energy derivatives will be possible with a
computational effort comparable with the one to com-
pute the energy alone. In other words, once the calcula-
tion of the energy is well optimized, by means of AAD,
also the one for the energy derivatives will be almost op-
timal.

The latter property is rather remarkable, and suggests that
most of the advanced ab initio tools belonging to a rather
restrictive approximation of the DFT functional, such as
structural optimization and molecular dynamics at finite tem-
perature, can be extended to highly accurate many-body ap-
proaches based on QMC, with a computational effort that re-
mains affordable even for a large number of atoms.

Though in most of the examples presented here we have
used the standard variational QMC method, the technique we
propose in this paper directly applies also to more accurate
QMC projection schemes, such as (lattice regularized) diffu-
sion Monte Carlo. However, one has to take into account that
in this case there are unsolved technical problems—e.g., infi-
nite variance in the most accurate estimators—that do not de-
pend on the technique we propose, and are outside the main
scope of this paper. In order to avoid confusion, we antici-
pate that we apply the AAD technique only to the specific
calculation of the wave function and the local energy (see later
for their definitions) required for the variational Monte Carlo
(VMC) or diffusion Monte Carlo (DMC) [lattice regularized
diffusion Monte Carlo (LRDMC)] evaluation of the average
energy. In principle AAD can be applied to the whole algo-
rithm, but we have not exploited this possibility that may be
interesting for future applications.

II. QMC WAVE FUNCTION, VMC, AND LRDMC

In this section we begin by describing the WF that we
have used in our QMC calculations. In the following we will
denote with r a generic three dimensional electronic position,
whereas x = {r1, r2, . . . , rN } stands for a configuration of all
electron positions and spins; the N↑ spin-up electrons are at
positions ri with 1 ≤ i ≤ N↑, and the N↓ spin-down electrons
are at positions N↑ + 1 ≤ i ≤ N .

The usual trial WF used in the QMC calculation is the
product of an antisymmetric part, and a Jastrow factor. The
antisymmetric part is a single Slater determinant, while the
Jastrow factor is a bosonic many-body function which ac-
counts for the dynamic correlations in the system. Our Slater
determinant is obtained with N/2 doubly occupied molecu-
lar orbitals ψ j (r), expanded over L atomic Gaussian orbitals
φ j (r), centered at atomic positions R j , as:6

ψi (r) =
L∑

j=1

χi jφ j (r), (1)

where the coefficients χi, j , as well as the nonlinear coeffi-
cients, appearing in the exponents of the Gaussians, can be
fully optimized by energy minimization as described later.

The molecular orbitals are initialized from a self-
consistent DFT-LDA calculation, in the same atomic basis.
The Jastrow factor takes into account the electronic correla-
tion between two electrons, and is conventionally split into
an homogeneous interaction J2, depending on the relative
distance between two electrons, and two nonhomogeneous
contributions J3 and J4, depending on the positions of two
electrons and one atom, and two electrons and two atoms, re-
spectively. It also contains an inhomogeneous term J̃2, de-
scribing the electron–ion interaction. This is important to
compensate for the change in the one particle density induced
by J2, J3, and J4, as well as to satisfy the electron–ion cusp
conditions. The homogeneous and inhomogeneous two-body
terms J2 and J̃2 are defined by the following equations:

J̃2 = exp

[
∑

ia

−(2Za)3/4u(Z1/4
a ria) +

∑

ial

ga
l χ J

al(ri )

]

, (2)

and

J2 = exp

[
∑

i< j

u(ri j )

]

, (3)

where i, j are indices running over the electrons, and l runs
over different single particle orbitals χ J

al centered on the
atomic center a; ria and ri j denote the electron–ion and
the electron–electron distances, respectively. The correspond-
ing cusp conditions are fixed by the function u(r ) = F[1
− exp(−r/F)]/2 (see, e.g., Ref. 8), whereas ga

l and F are op-
timizable variational parameters.

The three- and four-body Jastrow terms J3 J4 are given by

J3(x)J4(x) = exp




∑

i< j

f (ri , r j )



 , (4)

with f (ri , r j ), being a two-electron coordinate function that
can be expanded into the same single-particle basis used
for J̃2:

f (ri , r j ) =
∑

ablm

gab
lm χ J

al(ri )χ J
bm(r j ), (5)

with gab
lm optimizable parameters. Three-body (electron–ion–

electron) correlations are described by the diagonal ma-
trix elements gaa , whereas four-body correlations (electron–
ion–electron–ion) are described by the matrix elements with
a &= b.

The complete expression of the Jastrow factor
J (x) = J2(x) J̃2(x)J3(x)J4(x) that we adopt in this work
allows us to take into account weak and long-range electron–
electron interactions, and it is also extremely effective for
suppressing higher energy configurations occurring when
electrons are too close.

In order to minimize the energy expectation value corre-
sponding to this WF we have applied the well-established en-
ergy minimization schemes8–10 that we have recently adapted
for an efficient optimization of the molecular orbitals of the
Slater determinant in presence of the Jastrow factor described
above.6

In VMC, the energy expectation value of a given cor-
related WF, depending on a set of variational parameters
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ci , i = 1, . . . p, can be computed with a standard statistical
method. The energy depends in turn on the atomic positions
Ra , a = 1, . . . M , so that we indicate formally:

E({ci }, {Ra}) = 〈${ci },{Ra}|Ĥ{Ra}|${ci },{Ra}〉
〈${ci },{Ra}|${ci },{Ra}〉

. (6)

In VMC the above energy expectation value is computed sta-
tistically by sampling the probability %(x) ∝ 〈x |$〉2. Anal-
ogous and more accurate techniques are also possible within
QMC. In this work the LRDMC will be also used. The lat-
ter method is a projection technique, filtering out the ground
state component of a given variational WF by applying the
propagator e−Hτ to $ for large imaginary time τ . This prop-
agation is subject to the restriction to modify only the am-
plitudes of the WF without affecting its phases. In this way
one can avoid the so called “fermion sign problem” instabil-
ity in QMC, with an highly accurate technique, providing a
rigorous upper bound of the total energy even in presence of
pseudopotentials.11

III. SPACE WARP COORDINATE TRANSFORMATION
AND ITS DIFFERENTIAL FORM

The main purpose of this section is to describe an effi-
cient method to compute the forces F acting on each of the M
nuclear positions {R1, . . . , RM}, namely,

F(Ra) = −∇Ra E({ci }, {Ra}), (7)

with a reasonable statistical accuracy. Following Ref. 9, we
introduce a finite-difference operator '/'Ra for the evalua-
tion of the force acting on a given nuclear position Ra ,

'

'Ra
E = E(Ra + 'Ra) − E(Ra)

'Ra
(8)

so that

F(Ra) = − '

'Ra
E + O('R), (9)

where 'Ra is a three dimensional vector. Its length 'R can
be chosen as small as 10−6 atomic units, yielding negligible
finite-difference errors for the evaluation of the exact energy
derivative.

In order to evaluate the energy differences in Eq. (8) it is
very convenient to apply the SWCT. This transformation was
introduced a long time ago in Ref. 4, for an efficient calcula-
tion of the ionic forces within VMC. According to this trans-
formation, as soon as the ions are displaced, also the elec-
tronic coordinates r will be translated in order to mimic the
displacement of the charge around the nucleus Ra , namely,
x → x̄ , with

ri = ri + 'Raωa(ri ), (10)

ωa(r) = F(|r − Ra|)∑M
b=1 F(|r − Rb|)

, (11)

and F(r ) is a function which must decay rapidly; here we used
F(r ) = 1/r4 as suggested in Ref. 12.

The expectation value of the energy depends on 'Ra , be-
cause both the Hamiltonian and the WF depend on the nuclear
positions. Applying the SWCT to the integral involved in the
calculation, the expectation value reads

E(Ra + 'Ra) =
∫

dr3N J̃'Ra (x)$2
'Ra

(x̄(x))E'Ra
L (x̄(x))

∫
dr3N J̃'Ra (x)$2

'Ra
(x̄(x))

,

(12)

where J̃ is the Jacobian of the transformation and,

E'Ra
L = 〈$'Ra |Ĥ |x〉

〈$'Ra |x〉
(13)

is the so called local energy defined by the wave function
$'Ra on a real space electronic configuration x .

In the following, we define EL = E'R
L for 'Ra = 0.

The importance of the SWCT in reducing the statisti-
cal error in the evaluation of the force is easily understood
for the case of an isolated atom a. In this case, the force
acting on the atom is obviously zero, but only after the
SWCT with ωa = 1 the integrand in Eq. (12) is indepen-
dent of 'Ra , providing an estimator of the force with zero
variance.

Starting from Eq. (12), it is straightforward to derive ex-
plicitly a differential expression for the force estimator, which
is related to the gradient of the previous quantity with respect
to 'Ra in the limit of vanishing displacement,

Fa = −
〈

d
dRa

EL

〉
+ 2

(
〈EL〉

〈
d

dRa
log(J 1/2$)

〉

−
〈
EL

d
dRa

log(J 1/2$)
〉)

, (14)

where the brackets indicate a Monte Carlo like average over
the square modulus of the trial WF, namely, over the prob-
ability %(x) introduced in Sec. II. In the calculation of the
total derivatives d/dRa , we have to take into account that
the electron coordinates are also implicitly differentiated, ac-
cording to the SWCT. Then, all the terms above can be
written in a closed expression once the partial derivatives
of the local energy and of the WF logarithm are known,
namely,

d
dRa

EL = ∂

∂Ra
EL +

N∑

i=1

ωa(ri )
∂

∂ri
EL , (15)

d
dRa

log(J 1/2$)

= ∂

∂Ra
log($) +

N∑

i=1

[
ωa(ri )

∂

∂ri
log $ + 1

2
∂

∂ri
ωa(ri )

]
,

(16)

where the term (1/2)(∂/∂ri )ωa(ri ) in the square brackets
gives the contribution of the Jacobian.

Based on the expressions above we can evaluate the
forces in Eq. (14) in three different ways, listed below in in-
creasing order of efficiency:
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TABLE I. Efficiency of the various types of evaluation of forces in VMC
for a water dimer molecule at experimental equilibrium atomic positions. The
computational time to calculate the force components on the oxygen atoms
within a given statistical error is inversely proportional to the efficiency. The
HFM efficiency is taken for reference equal to one, for a statistical accuracy
of 0.001 a.u. Pseudopotential is used only for the oxygen.

Method HFM No-SWCT SWCT

Efficiency 1 165 1360

1. Hellmann–Feynman (HFM). By neglecting all the de-
pendence of $ on the atomic position, and without the
SWCT:

Fa = −〈∂Ra Ĥ〉.

This is the least accurate expression, because without the
so called Pulay terms derived in Eq. (16) the force is
consistent with the energy derivative only when the WF
is the exact ground state. This is also the least efficient
way to compute the forces as indicated in Table I.

2. No-SWCT. This is obtained by using the terms (15, 16)
in Eq. (14) with ωa(,r ) = 0. This expression is much
more accurate and efficient than the previous one, as
it fulfills the so called “zero-variance principle”: if the
WF $ coincides with the exact ground state for arbitrary
atomic position Ra , it is easy to realize that the estima-
tor of the forces does not have statistical fluctuations, as
the local energy and its derivative are just constant, and
independent of the real space configuration x .

3. Differential SWCT. The properties above are clearly ful-
filled also in this case. Moreover, the SWCT does not
change the mean value of the forces, but affects only
their statistical fluctuations. In fact, as mentioned be-
fore, the SWCT allows us to obtain a zero-variance prop-
erty for the forces acting on isolated atoms. As a result,
this transformation is extremely important for comput-
ing forces between atoms at large distance, as in this
limit they can be considered isolated.

The advantage to use the SWCT for a water dimer
molecule is illustrated in Table I. It is clear that without the
SWCT, or even without the differentiation of the local energy
with respect to the atomic position (no-SWCT case), the eval-
uation of forces with a reasonable statistical error is simply
not possible.

As discussed in Sec. IV, all partial derivatives involved
in the expressions above, namely, the 6N + 6M compo-
nents, (∂/∂ri )EL , (∂/∂ri ) log $, (∂/∂Ra)EL , (∂/∂Ra) log $,
can be evaluated very efficiently with algorithmic differenti-
ation (AD). This is true also when the WF and the expres-
sion for the local energy are extremely cumbersome, e.g.,
when using pseudopotentials. As a result, the quantities in
Eqs. (15) and (16) can be evaluated using just a minor com-
putational effort with roughly ∝ N M operations. In partic-
ular, one of the most involved contribution to the local en-
ergy is the one corresponding to the bare kinetic energy K̂ =
− 1

2

∑N
i=1 'i . The Hamiltonian Ĥ in Eq. (13) always contains

this term, even in presence of pseudopotentials. In the fol-
lowing, we will discuss how to differentiate the contribution

K = 〈$|K̂ |x〉/〈$|x〉 to the local energy for the particularly
simple but instructive case of a Slater determinant WF with
no Jastrow factor.

IV. ADJOINT ALGORITHMIC DIFFERENTIATION

Algorithmic differentiation13 is a set of programming
techniques for the efficient calculation of the derivatives
of functions implemented as computer programs. The main
idea underlying these techniques is the fact that any such
function—no matter how complicated—can be interpreted as
the composition of more elementary functions each of which
is in turn a composition of basic arithmetic and intrinsic oper-
ations that are easy to differentiate. As a result, it is possible
to calculate the derivatives of the outputs of a program with
respect to its inputs by applying mechanically the rules of
differentiation—and in particular the chain rule—to the com-
position of its constituent functions.

What makes AD particularly attractive, when compared
to standard (finite-difference) methods for the calculation of
derivatives is its computational efficiency. In fact, AD exploits
the information on the calculations performed by the com-
puter code, and the dependencies between its various parts,
in order to optimize the calculation. In particular, when one
requires the derivatives of a small number of outputs with re-
spect to a large number of inputs, the calculation can be highly
optimized by applying the chain rule through the instructions
of the program in opposite order with respect to the one of
evaluation of the original instructions. This gives rise to the
so called AAD.

Even if AD has been an active branch of computer sci-
ence for several decades, its impact in other research fields
has been surprisingly limited until very recently.14 Only over
the past 2 years its tremendous effectiveness in speeding
up the calculation of sensitivities, e.g., in Monte Carlo sim-
ulations, has been first exploited in computational finance
applications.15 In particular, the potential of AD has been
largely left untapped in the field of computational physics
where, as we demonstrate in the following, it could move sig-
nificantly the boundary of what can be studied numerically
with the computer power presently available.

Griewank13 contains a detailed discussion of the compu-
tational cost of AAD.16 Here, we will only recall the main
ideas underlying this technique to clarify how it can be bene-
ficial in the implementation of the calculation of the forces in
QMC. To this end, we consider a particular computer imple-
mented function X → Y

Y = FUNCTION(X ) (17)

mapping a vector X in Rn in a vector Y in Rm through a se-
quence of two sequential steps

X → U → V → Y.

Here, each step can be a distinct high-level function, or even
an individual instruction in a computer code. A general code
is usually implemented by several steps of this type, and, more
importantly, the output of a particular instance can be used as
an input not only for the next one but generally for all in-
stances occurring later in the algorithm. Generally speaking
an algorithm can be viewed as a sequential tree or graph with
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connectivity larger than one, where each node has more than
one children. However, to keep things as simple as possible,
in this “warm up” example we do not consider these more
complex cases. The generalization to a realistic computational
graph is however straightforward.16

The adjoint mode of AD results from propagating the
derivatives of the final result with respect to all the interme-
diate variables—the so called adjoints—until the derivatives
with respect to the independent variables are formed. Using
the standard AD notation, the adjoint V̄ of any input variable
V of an instance V → Y is defined as the derivative of a given
linear combination of the output

∑
j Ȳ j Y j with respect to the

input V , namely,

V̄k =
m∑

j=1

Ȳ j
∂Y j

∂Vk
, (18)

where Ȳ is a given input vector in Rm . In particular, for each
of the intermediate variables, using the chain rule, we get

Ȳ j
∂Y j

∂ Xi
= Ȳ j

∂Y j

∂Vk

∂Vk

∂Ul

∂Ul

∂ Xi
,

where repeated indices indicate implicit summations. It is
simple to realize that in such a simple case we can use the
definition in Eq. (19) to evaluate X̄ , namely,

Ȳ j
∂Y j

∂ Xi
= V̄k

∂Vk

∂Ul

∂Ul

∂ Xi
= Ūl

∂Ul

∂ Xi
= X̄ .

In other words, once all adjoint instances have been defined,
the bar input of each adjoint instance can be obtained from the
output of the previous adjoint instance according to a diagram
that follows very straightforwardly the original algorithm in
reversed sequential order:

Ȳ → V̄ → Ū → X̄ . (19)

In this way we obtain X̄ , i.e., the linear combination of
the rows of the Jacobian of the function X → Y , with weights
given by the input Ȳ (e.g., 1, 0, . . . , 0), namely,

X̄i =
m∑

j=1

Ȳ j
∂Y j

∂ Xi
, (20)

with i = 1, . . . , n.
In the adjoint mode, the cost does not increase with

the number of inputs, but it is linear in the number of (lin-
ear combinations of the) rows of the Jacobian that need
to be evaluated independently. In particular, if the full Ja-
cobian is required, one needs to repeat the adjoint calcu-
lation m times, setting the vector Ȳ equal to each of the
elements of the canonical basis in Rm . Furthermore, since the
partial derivatives depend on the values of the intermediate
variables, one generally first has to compute the original cal-
culation storing the values of all of the intermediate variables
such as U and V , before performing the adjoint mode sensi-
tivity calculation.

One particularly important theoretical result is that given
a computer code performing some high-level function (17),
the execution time of its adjoint counterpart

X̄ = FUNCTION_B(X, Ȳ ) (21)

(with suffix _B for “backward”) calculating the linear combi-
nation (20) is bounded by approximately four times the cost of
execution of the original one. Thus, one can obtain the sensi-
tivity of a single output, or of a linear combination of outputs,
to an unlimited number of inputs for little more work than the
original computation.

The propagation of the adjoints, being mechanical in na-
ture can be automated. Indeed, several AD tools14 are avail-
able that, given a function of the form (17), generate the ad-
joint function (21). While the application of such automatic
AD tools to large inhomogeneous simulation software is chal-
lenging, the principles of AD can be used as a programming
paradigm of any algorithm. This is especially useful for the
most common situations where simulation codes use a vari-
ety of libraries written in different languages, possibly linked
dynamically. However, automatic tools are of great utility to
generate the adjoint of self-contained functions and subrou-
tines thus effectively reducing the development time of ad-
joint implementations.

A detailed tutorial on the programming techniques that
are useful for adjoint implementations is beyond the scope of
this paper. However, when hand-coding the adjoint counter-
part of a set of instructions in a general algorithm it is of-
ten enough to keep in mind just a few practical recipes, for
instance:

(i) As previously mentioned, each intermediate differen-
tiable variable U can be used not only by the subsequent
instance but also by several others occurring later in the
program. As a result, the adjoint of U has in general sev-
eral contributions, one for each instruction of the origi-
nal function in which U was on the right hand side of
the equal sign (assignment operator). Hence, by exploit-
ing the linearity of differential operators, it is in general
easier to program according to a syntactic paradigm in
which adjoints are always updated so that the adjoint of
an instruction of the form

V = V (U )

reads

Ūi = Ūi + ∂Vk(U )
∂Ui

V̄k .

Clearly, this implies that the adjoints have to be appro-
priately initialized as discussed in the following para-
graphs. In particular, to cope with input variables that are
changed by the algorithm (see next point) it is generally
best to initialize to zero the adjoint of a given variable
in correspondence of the instruction in which it picks
its first contribution (i.e., right before the adjoint corre-
sponding to the last instruction of the original code in
which the variable was to the right of the assignment
operator). For instance, the adjoint of the following se-
quence of instructions

y = F(x)

z = H (x, y)

x = G(z)
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can be written as:

z̄ = 0

z̄ = z̄ + ∂G(z)
∂z

x̄

ȳ = 0

x̄ = 0

x̄ = x̄ + ∂ H (x, y)
∂x

z̄

ȳ = ȳ + ∂ H (x, y)
∂y

z̄

x̄ = x̄ + ∂ F(x)
∂x

ȳ.

Note in particular that the symbol x represents the in-
put and the output of the algorithm. As a result, also x̄
represents both the input and the output of the adjoint
algorithm and it is crucial to reinitialize to zero x̄ before
it picks its first contribution from an adjoint statement,
i.e., the one associated with the instruction z = H (x, y).
As explained in detail in the following example, the
algorithm could be more easily understood by replac-
ing the last statement by another independent output
variable u = G(z), and following the straightforward
derivation of the adjoint algorithm that has for input ū
and output x̄ (see also the example below). One can eas-
ily derive that the resulting algorithm coincides with the
one above, namely, the same input provides the same
output.

(ii) In some situations the input U of a function V = V (U )
is modified by the function itself. This situation is easily
analyzed by introducing an auxiliary variable U ′ repre-
senting the value of the input after the function evalu-
ation. As a result, the original function can be thought
of the form (V, U ′) = (V (U ), U ′(U )), where V (U ) and
U ′(U ) do not mutate their inputs, in combination with
the assignment U = U ′, overwriting the original input
U . The adjoint of this pair of instructions clearly reads

Ū ′
i = 0

Ū ′
i = Ū ′

i + Ūi ,

where we have used the fact that the auxiliary variable
U ′ is not used elsewhere (so Ū ′

i does not have any previ-
ous contribution), and

Ūi = 0

Ūi = Ūi + ∂Vk(U )
∂Ui

V̄k + ∂U ′
l (U )

∂Ui
Ū ′

l ,

where, again, we have used the fact that also the original
input U is not used after the instruction V = V (U ), as it
gets overwritten. One can therefore eliminate altogether
the adjoint of the auxiliary variable Ū ′ and simply write

Ūi = ∂Vk(U )
∂Ui

V̄k + ∂U ′
l (U )

∂Ui
Ūl .

Very common examples of this situation are given by
increments of the form

Ui = a Ui + b

with a and b constant with respect to U . According to the
recipe above, the adjoint counterpart of this instruction
simply reads

Ūi = a Ūi .

These situations are common in iterative loops where
a number of variables are typically updated at each
iteration.

In order to better illustrate these ideas, here we con-
sider the calculation of the kinetic energy and of its adjoint
counterpart, where for simplicity we consider only one spin
component (maximum polarized case), as the calculation of
both spin up and spin down contributions can be obtained
just by summing them. Given the position of the electrons
x and of the ions R, the calculation of the kinetic energy can
be performed according to the following steps, as derived in
Appendix A:

(1) Calculate Ai, j = ψi (r j ) and Bi, j = ' jψi (r j ) according
to the definition of the molecular orbitals in Eq. (1).

(2) Calculate A−1
i, j by matrix inversion.

(3) Calculate the kinetic energy as

K = −1
2

∑

i, j

A−1
i, j B j,i . (22)

The corresponding adjoint algorithm can be constructed by
associating to each of the steps above its adjoint counter-
part according to the correspondence given by Eqs. (17),
(20), and (21). As a result, as also illustrated schematically in
Fig. 1, the adjoint algorithm for the derivatives of the kinetic
energy with respect to the positions of the electrons and ions,

FIG. 1. Schematic representation of the adjoint algorithm for the calculation
of the local kinetic energy. Note that the inverse of the matrix A can be passed
directly as an input (dotted arrow) of step 2̄ thus avoiding to repeat the matrix
inversion.
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consists of steps 1–3 above, and their adjoint counterparts ex-
ecuted in reverse order, namely,

3̄. Set K̄ = 1, and evaluate the adjoint of the function
(A−1

i, j , B j,i ) → K defined in step 3. This is a func-
tion of the form (A−1

i, j , Bi, j , K̄ ) → ( Ā−1
i, j , B̄i, j ) with Ā−1

i, j

= − 1
2 K̄ B j,i and B̄i, j = − 1

2 K̄ A−1
j,i .

2̄. Evaluate the adjoint of the function Ai, j → A−1
i, j

(step 2), namely, (Ai, j , Ā−1
i, j ) → Āi, j with

Ā = −(A−1)T Ā−1(A−1)T (see App. B).
1̄. Evaluate the adjoint of the function (x, R)

→ (Ai, j , Bi, j ) (step 1), namely, (x, R, Āi, j , B̄i, j )
→ (x̄, R̄) with

x̄ j = ∂K
∂r j

=
∑

i

Āi, j∂r j ψi (r j ) + B̄i, j∂r j ' jψi (r j ),

R̄a = ∂K
∂Ra

=
∑

i, j

[
Āi, j∂Ra ψi (r j ) + B̄i, j∂Ra ' jψi (r j )

]

=
∑

i, j,k

χi,kδRk ,Ra

[
Āi, j∂Rk φk(r j ) + B̄i, j∂Rk ' jφk(r j )

]
,

where in the latter equality we have expanded the or-
bitals in terms of atomic orbitals, by means of Eq. (1).

Notice that in the last expression it is the presence of the Kro-
necker delta, that allows the computation of all the deriva-
tives with respect to the atomic positions Ra in . 2N 2L op-
erations, namely, the same amount of operations used in the
forward step. Indeed by summing only once over the three in-
dices i, j, k in the above expression all the force components
acting on all the atoms are obtained.

In AAD this is not accidental, and the structure of the
algorithm is automatically optimized for computing several
derivatives at the cheapest computational cost.

By applying the chain rule it is immediate to see that x̄
and R̄, computed according to the steps above, are the deriva-
tives of the kinetic energy with respect to the position of the
electrons and the ions, respectively. It is also easy to realize
that—as expected according to general results on the compu-
tational complexity of adjoint algorithms13 quoted above—
the number of operations involved in each adjoint step is a
small constant times the number of operations of the origi-
nal step, namely, (considering only multiplications) 2N 2L vs
N 2L , 2N 3 vs N 3, and 2N 2 vs N 2 for steps 1̄ vs 1, 2̄ vs 2, and
3̄ vs 3, respectively.

As also anticipated, the propagations of the adjoints
(steps 3̄−1̄) can be performed only after the calculation of
the kinetic energy has been completed (steps 1−3) and some
of the intermediate results (e.g., the matrices A, B, and A−1)
have been computed and stored. This is the reason why, in
general, the adjoint of a given function generally contains a
forward sweep, reproducing the steps of the original function,
plus a backward sweep, propagating the adjoints. This con-
struction can be clearly applied recursively for each of the
steps involved in the calculation.

It is worth noting that each adjoint step, taken in isolation,
contains in turn a forward sweep, recovering the information
computed in the original step that is necessary for the propa-

gation of the adjoints. However, this can be clearly avoided by
storing such information at the time it is first computed in the
original step. Strictly speaking, this is necessary to ensure that
the computational cost of the overall algorithm remains within
the expected bounds. However, there is clearly a tradeoff be-
tween the time necessary to store and retrieve this information
and the time to recalculate it from scratch, so that in practice
it is often enough to store in the main forward sweep only
the results of relatively expensive computations. In the exam-
ple above for instance, significant savings can be obtained by
storing the inverse of the matrix A at the output of step 2 and
passing it as an input of Step 2̄ (see Fig. 1).

The main complication in the algorithm above is the im-
plementation of the adjoint of the Laplacian of the WF in
step 1̄. However, the calculation of the Laplacian is a good
example of an instance that can be represented by a self-
contained, albeit complex, computer function, for which sev-
eral automatic differentiation tools are available. In particular,
in order to complete step 1̄, it is enough to define the adjoint
functions of the calculation of the Laplacian ,r → 'φ j (,r ), for
a set of explicit functions {φ j } (e.g., Gaussians). The adjoints
are then computed by means of the corresponding gradient
of the Laplacian, namely, ψ̄ → ,̄r where ,̄r = ,̄r + ψ̄∇,r'φ j (,r ).
For this application we have used TAPENADE, developed at
INRIA by Hascoët and collaborators.17

V. RESULTS

After implementing the adjoint counterpart of the two
main instances corresponding to the evaluation of the log
WF and the local energy, we have computed the exact
energy derivatives and compared with the straightforward
finite-difference evaluation, finding perfect agreement within
numerical accuracy. However, the finite-difference method
presents a well known bottleneck: in order to evaluate the
3M energy derivatives, one has to evaluate the local en-
ergy and the log WF at least 3M times more. Since the
computation of such quantities is the most relevant part in
QMC, with a computational effort scaling as N 3, we end up
with a very inefficient algorithm for large number of atoms.
As shown in Fig. 2, this slowing down can be completely
removed by using AAD, as the cost to compute all the force

FIG. 2. Ratio of CPU time required to compute energies and all force compo-
nents referenced to the one required for the simple energy calculation within
VMC. The calculations refer to 1, 2, 4, and 32 water molecules. The inset is
an expansion of the lower part of the plot.
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components in a system containing several water molecules,
remains approximately four times larger than the cost to com-
pute only the total energy. This factor 4 is a very small cost,
if we consider that the main adjoint instance has to be eval-
uated twice, one for the local energy and the other for the
WF logarithm, and that, on the other hand, VMC is the fastest
method in QMC. For instance, we can evaluate forces within
LRDMC with only a small overhead, as the cost to gener-
ate a new independent configuration within LRDMC is about
ten times larger than VMC, and therefore, for this more ac-
curate method, the cost to compute all force components will
be essentially negligible. Analogous consideration holds dur-
ing an energy optimization. We have to consider that in this
case AAD can be used to compute not only the force com-
ponents, but also all the energy derivatives with respect to all
variational parameters {ci } of the WF, essentially at the same
computational cost, even when the number p of variational
parameters is extremely large.

Though we have not implemented AAD for this general
task, we expect a further speed up (and simplification) of the
code, once AAD will be fully implemented for all possible en-
ergy derivatives. We believe this will become common prac-
tice for future quantum Monte Carlo packages. At present, in
order to have consistent forces within VMC, all variational
parameters have to be optimized,18 and to this purpose we
have used the standard way to compute energy derivatives.

We have applied the efficient evaluation of the forces for
the structural optimization of the water monomer. We have
used energy-consistent pseudopotentials19 only for the oxy-
gen atom. In the calculation we have adopted a huge basis
set to avoid basis superposition errors. The molecular orbitals
are expanded in a primitive basis containing 24s22p10d6f1g
on the oxygen and 6s5p1d on the hydrogen atom. The ex-
ponents of the Gaussians are optimized by minimizing the
energy of a self-consistent DFT calculation within the LDA
approximation.7 The accuracy in the total DFT energy is well
below 1 mHa for the water dimer, implying that we are es-
sentially working with an almost complete basis set. For the
Jastrow factor we have also used a quite large basis, to achieve
similar accuracy in the total energy, within a VMC calculation
on a WF obtained by optimizing the Jastrow over the LDA
Slater determinant. The final optimized basis for the Jastrow
contains a contracted basis 6s5p2d/3s3p1d on the oxygen and
an uncontracted 1s1p basis on the hydrogen atom.

In the following we describe the first application of this
method for optimizing the structure of simple water com-
pounds. The variational parameters of the WF—molecular
orbitals and Jastrow factor—are optimized, by energy mini-
mization, with the method described in Ref. 6. At each step
of optimization, we compute the ionic forces by AAD, and
we employ a standard steepest descent move of the ions
Ra → R′

a :

R′
a = Ra + 'τFa, (23)

where 'τ = 1/2 a.u. After several hundred iterations both
the variational parameters and the atomic positions fluctuate
around average values, and we use the last few hundred it-
erations to evaluate the error bars and the mean value of the
atomic positions, as illustrated in Fig. 3.

FIG. 3. Oxygen–oxygen distance as a function of the number of iterations for
determining the equilibrium zero-temperature structure of the water dimer.
All the 18 atomic coordinates, as well as about 1000 variational parameters
of the electronic many-body WF are fully optimized with an iterative scheme
(Refs. 6 and 8).

In Table II we show the optimized structure of the wa-
ter monomer. As it is clearly evident our final atomic po-
sitions are almost indistinguishable from the experimental
ones. Generally speaking our calculation appears more accu-
rate than simple mean field DFT methods, and comparable
with state of the art quantum chemistry techniques, such as
CCSD(T). The accuracy of the VMC method has been also
confirmed recently in another context.20

In the dimer structure the situation is slightly different.
As shown in Table III, the oxygen–oxygen distance is in quite
good agreement with experiments, whereas the OHO angle is
overestimated by few degrees. Probably in this case the quan-
tum corrections should affect the hydrogen position between
the two oxygens, because the dimer bond is very weak. Indeed
we have also checked that, with the more accurate LRDMC
calculation, the equilibrium structure obtained by the VMC
method remains stable as all the force components are well
below 10−3 a.u. On the other hand LRDMC increases the
binding of the dimer by about 1 kCal/mol, showing that, from
the energetic point of view, the LRDMC calculation may be
important, as also confirmed in previous studies.6, 21 All the
above calculations can be done with a relatively small compu-
tational effort (few hours in a 32 processor parallel computer),
and therefore the same type of calculation, with the same level
of accuracy, can be extended to much larger systems contain-
ing several atoms with modern supercomputers.

Stimulated by the above success we have tested the finite-
temperature molecular dynamics simulation introduced some
time ago,1 using 4 water molecules in a cubic box with
4.93 Å side length, mimicking the density of liquid water at
ambient conditions. Since we are interested in static equilib-
rium properties we have used for the oxygen the same mass
of hydrogen. Though the system is very small we have been

TABLE II. VMC optimized structure of the water monomer.

Exp VMC LDAa BLYPa BPa CCSD(T)b

dO H (A) 0.957c 0.954(1) 0.973 0.973 0.974 0.95829
& H O H (deg) 104.5d 104.61(10) 104.4 104.6 104.1 104.454

aFrom Ref. 23
bFrom Ref. 24
cFrom Ref. 25
dFrom Ref. 26
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TABLE III. VMC optimized structure of the water dimer. The LRDMC calculation was done only for the binding energy, by projecting the VMC WF.

Exp VMC LRDMC LDAa BLYPa PBEb CCSD(T)c

dO O (A) 2.98d 2.969(2) – 2.70 2.95 2.89 2.9089
& O H O (deg) 174e 177.6(3) – 169 173 172 -
Binding (kCal/mol) 5.0(7)f 3.84(14) 4.76(6) 8.8 4.3 5.55 =
aFrom Ref. 23
bFrom Ref. 27
cFrom Ref. 28
dFrom Ref. 29
eFrom Ref. 30
fFrom Ref. 31

able to perform several thousands steps. For each step all vari-
ational parameters are optimized using a given number n of
stochastic reconfiguration (SR) optimizations.8 For the first
18 000 steps we used n = 1 and a time integration step 't
for the MD ranging from 20 to 40 a.u. Several iterations were
possible because in QMC we can decide to work with a rel-
atively small number of samples to accumulate statistics for
the energy derivatives and the forces. In these conditions the
forces are rather noisy but the molecular dynamics with noise
correction1 allows us to have sensible results, at the price to
have an overdamped dynamics. However, as it is shown in
Fig. 4, it is difficult to remain within the Born–Oppenheimer
energy surface, because at selected times, we have fully opti-
mized the wave function using further 200 SR iterations, and
found 6 mHa difference between the energy on fly and the
optimized energy. In order to overcome this bias in the dy-
namics, in the final part of the MD simulation, we have used
n = 10 (and 't = 40 a.u.) and found that we remain suffi-
ciently close to the Born–Oppenheimer energy surface. This
very preliminary application is clearly limited by the too small
number of water molecules considered in the simulation, and
therefore does not allow us to determine the equilibrium prop-
erties of liquid water. Nevertheless, we believe that this result
is rather encouraging because it shows that all the possible
sources of errors in the MD driven by QMC forces, can be
controlled in a rather straightforward way.

FIG. 4. Average internal energy as a function of the simulation time, for
the molecular dynamics with QMC forces1 and four water molecules in a
cubic box. Empty dots indicate VMC energy values corresponding to the
time evolved WF with much smaller error bars (<0.4 mHa). Empty squares
are obtained after optimizing the WF at fixed atomic positions, starting
from the previous initial state and with quite accurate statistical accuracy
(<0.4 mHa).

VI. CONCLUSIONS

In this work we have shown that the calculation of
all the force components in an electronic system contain-
ing several atoms, can be done very efficiently using ad-
joint algorithmic differentiation (AAD). In particular it is
possible to employ the very efficient space warp coordinate
transformation (SWCT) in differential form in a straightfor-
ward and simple way, even when pseudopotentials and/or
complicated many-body wave functions are used. More im-
portantly, we have shown that, using AAD, one can com-
pute all these force components, and in principle all the
energy derivatives with respect to any variational param-
eter contained in the many-body wave function, in about
four times the cost to compute the expectation value of the
energy.

So far, for large number of atoms, the use of quantum
Monte Carlo methods have been generally limited to total en-
ergy calculations. We believe that our work opens the way for
new and more accurate tools for ab initio electronic simula-
tion based on quantum Monte Carlo. In particular we have
shown that it is possible to perform an ab initio molecular dy-
namics simulation for several picoseconds, in a system con-
taining four water molecules. Since the cost of a variational
Monte Carlo calculation with fixed statistical accuracy in the
energy per atom (total energy) increases with the number of
atoms as M2 (M4) the simulation of about 32 water molecules
should be possible with less than 105 (107) CPU hours, a fig-
ure that is nowadays possible (at the limits of present possi-
bilities) with modern massively parallel supercomputers. It is
not known at present if it is sufficient to target a fixed sta-
tistical error in the energy per atom in order to obtain well-
converged thermodynamic extensive quantities. Otherwise a
computationally more expensive calculation with a statistical
error on the total energy of the order of kT is necessary, as in
the penalty method.22

In the example we have presented, we have also seen
that the accuracy of variational Monte Carlo in determin-
ing the equilibrium structure of the water monomer and the
water dimer is rather remarkable and comparable to post-
Hartree–Fock methods, requiring much more computer re-
sources for large number of atoms. Therefore we believe that,
in view of the efficiency in the evaluation of forces obtained
by AAD, realistic and very accurate ab initio simulation based
on quantum Monte Carlo will be within reach in the near
future.
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APPENDIX A: CALCULATION OF THE LAPLACIAN

In order to compute the Laplacian K of a Slater determi-
nant WF:

〈x |S〉 = det A, (A1)

where A is the N × N matrix defined by

Ai, j = ψi (rj), (A2)

and the molecular orbitals ψi are defined in Eq. (1) and the
spin index is omitted for simplicity.

We notice that if we change the electron position of the
kth electron the matrix A change only by a single column:

A′
i, j = Ai, j + δ j,k[ψi (r′

k) − Ai,k]. (A3)

In this way we can single out the dependence on r′
k by evalu-

ating explicitly the ratio of the two WF’s:

det A′

det A
= det A−1 A′ =

∑

j

A−1
k, jψ j (r′

k). (A4)

The evaluation of the Laplacian with respect to the kth elec-
trons easily follows by linearity of differential operations such
as the Laplacian, so that we finally arrive to Eq. (22), by sum-
ming over all the electrons.

APPENDIX B: CALCULATION OF THE ADJOINT OF AN
INVERSE MATRIX OPERATION

In this appendix we derive the adjoint instance of the cal-
culation of the inverse A−1

i j of an input N × N square matrix
Ai, j . To this purpose we notice that an arbitrary linear com-
bination of the output (the inverse matrix) can be written as:

∑

i, j

Ā−1
i, j A−1

i, j = Tr[( Ā−1)T A−1], (B1)

where the subscript T indicate the transpose of the corre-
sponding matrix, and Tr the conventional matrix trace (sum of
the diagonal elements). As explained in Sec. IV by differenti-
ating the above equation with respect to an arbitrary variation
of the input we obtain the adjoint instance. To this purpose we
denote the differential change of the input A with the matrix
D A, so that the corresponding variation can be conveniently
written as:

(A + D A) = A(I + A−1 D A)

and therefore:

(A + D A)−1 = (I − A−1 D A)A−1 + O(|D A|2).

Thus, by simply substituting the above relation in
Eq. (B1), and by using the cyclic invariance of the trace, we
obtain

dTr[( Ā−1)T A−1] = −Tr[A−1( Ā−1)T )A−1 D A], (B2)

which implies that the adjoint matrix Ā, after this instance, is
updated as follows:

Ā = Ā + dTr[( Ā−1)T A−1]
d A

= Ā − [A−1( Ā−1)T )A−1]T

= Ā − (A−1)T Ā−1(A−1)T , (B3)

which concludes this appendix.
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