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We show strong numerical evidence in favor of an unexpected virtually gapless spectrum, with edge states
localized at the boundaries, in frustrated spin-1 /2 antiferromagnetic ladders with an odd number of legs. These
features can be accurately reproduced by using a projected BCS wave function with a nontrivial pairing that
mixes even and odd reflection symmetries. This approach gives the correct classification of the excitations and
provides a simple and very appealing picture of an unconventional spin-liquid phase stabilized by frustration.
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In the last few decades there has been an increasing the-
oretical and experimental effort to clarify the nature of the
disordered phases stabilized by competing interactions in
magnetic materials.1 A very exciting scenario appears when
such disordered spin liquids are gapless with fractional exci-
tations, generalizing the critical phase of one-dimensional
systems to higher dimensions.2 Recent realizations of frus-
trated antiferromagnets on quasi-two-dimensional lattices,
like NiGa2S4 or �-�ET�2Cu2�CN�3,3,4 give promising evi-
dence in this direction. In particular, in organic materials,
NMR shows a power-law behavior of 1 /T1 at very low tem-
peratures without any signal of magnetic order.5 Interest-
ingly, also in Cs2CuCl4, neutron scattering measurements
show the existence of a continuum of excited states, compat-
ible with pairs of spinon excitations.6

From a theoretical point of view, a promising strategy is
to consider quasi-one-dimensional systems, where several
very reliable techniques are available, e.g., bosonization or
density-matrix renormalization group �DMRG�, in order to
extract important insight into the more relevant two-
dimensional �2D� case. In this Rapid Communication, we
take this point of view and study the spin-1 /2 J1-J2 Heisen-
berg model on ladders with an odd number of legs,

H = J1 �
�R,R��

SR · SR� + J2 �
��R,R���

SR · SR�, �1�

where SR is the spin operator on site R= �x ,y�, and the sum is
restricted to first �J1�, second �J2� nearest neighbors. We con-
sider systems with N=L�n sites, where n is the odd number
of legs and L is the number of rungs, with open boundary
conditions along the rungs.

The physical properties of odd-leg ladders are expected to
be similar to the ones of the 2D case. Indeed, although for
any finite number of legs n there are no magnetically ordered
phases, in the weakly frustrated regime, i.e., J2 /J1�1 or
J1 /J2�1, the excitation spectrum has a gapless branch,
analogously to the 2D case. Such a system, for small n, has
been recently considered by different groups with contradict-
ing results.7–9 In particular, in Ref. 8 it has been argued that,
for any number of legs, a relevant operator that breaks the

translational symmetry induces spontaneous dimerization in
the intermediate region J2 /J1�1/2. On the contrary, such a
dimerization has not yet been detected by numerical
calculations.9 In order to clarify this issue, we consider the
model of Eq. �1� with n=3 by using a variety of numerical
techniques. Lanczos exact diagonalizations unveil a very pe-
culiar and unexpected excitation spectrum and DMRG rules
out any sizable dimerization. Remarkably, all these numeri-
cally exact results can be interpreted by means of a simple,
but nevertheless extremely accurate, projected BCS state,
with a nontrivial pairing function.

Let us start with the excitation spectrum obtained by
Lanczos diagonalizations with periodic boundary conditions
along the chains. In Fig. 1, we show the evolution of a few
low-energy excitations in the relevant subspaces defined by

FIG. 1. �Color online� Some of the relevant low-energy gaps as
a function of J2 /J1 from Lanczos data. Triplet with kx=�, rx=1,
and ry =1 �blue circles�, singlet with kx=�, rx=−1, and ry =1 �green
triangles�, singlet with kx=0, rx=1, and ry =−1 �red squares�, singlet
with kx=�, rx=1, and ry =−1 �empty black triangles�, and the low-
est excitation in the same subspace of the ground state �empty ma-
genta circles�. All the quantum numbers are referred to the ground
state and lines are guides to the eye.
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the spatial symmetries of the Hamiltonian: the crystal mo-
mentum along the x direction, the reflection Rx that changes
x→−x, the reflection Ry across the central chain, and the
total spin. For both small and large J2, as expected, all the
excitations odd under Ry �i.e., ry =−1� have a sizable gap.
Although the quantum numbers of the ground state do not
change by varying J2 /J1, we have evidence in favor of an
avoided crossing that is indicated by the sudden drop of the
lowest energy gap in the ground-state subspace. This sug-
gests the possible occurrence of a first-order phase transition,
slightly shifted to larger values of J2 /J1 �i.e., J2 /J1�0.6�
with respect to the classical model.1 More interestingly, the
frustrating interaction induces a dramatic effect on excita-
tions with odd Ry, and for J2 /J1�0.55 the lowest excitation
is an ry =−1 singlet with zero momentum kx �referenced to
the ground state�. Although Lanczos diagonalizations are
limited to 12�3, we have evidence that, in the thermody-
namic limit, this excitation becomes gapless in a small re-
gion around J2 /J1�0.55. We notice that the quantum num-
bers of this excitation are not the ones implied by the
Affleck-Lieb-Schulz-Mattis theorem, i.e., a gapless state
with momentum kx=� with respect to the ground state.10 In
agreement with that, we also have evidence that both a triplet
state �rx=1 and ry =1� and a singlet state �rx=−1 and ry =1�
with kx=� become gapless in the thermodynamic limit for
all the values of J2 /J1 considered. These results are not com-
patible with conventional dimerization, where the ground
state is doubly degenerate with a finite gap with respect to all
the other excitations.

A further confirmation of a gapless triplet excitation
comes from a systematic finite-size scaling by using DMRG
with open boundary conditions in both x and y directions.
The triplet gap vanishes in the thermodynamic limit for all
the values of J2 /J1 considered �see Fig. 2�, in agreement with
previous DMRG results.9 In order to reconcile the numerical
finding with the theoretical predictions of Ref. 8, we consider
the influence of a third-nearest-neighbor interaction J3. In
fact, as suggested in Ref. 11, for J2=0 this stabilizes a phase

with a sizable gap and dimerization. In this respect, we have
studied the size scaling of the spin gap for J2 /J1=0.55 for
different values of J3 /J1. As shown in Fig. 3, the thermody-
namic limit of the spin gap is clearly finite for J3 /J1�0.2,
and vanishes as J3 decreases. Since the spin gap is charac-
terized by a Kosterlitz-Thouless �KT� behavior, the precise
value of the critical coupling J3

c is difficult to assess numeri-
cally. However, our results indicate that for J3 /J1�0.1 the
spin gap is exceedingly small ��10−8J1�. In addition, exten-
sive calculations on five- and seven-leg ladders indicate that
the finite-size gap at fixed L decreases with the number of
legs, thus suggesting the stabilization of a gapless and homo-
geneous phase for J2 /J1�0.55 also in 2D. This conclusion is
also confirmed by a study of the dimer susceptibility calcu-
lated by adding a small perturbation that breaks the transla-
tional symmetry, O=��ReiQRSR ·SR+x, with Q= �� ,0�, and by
computing the second derivative of the ground-state energy
with respect to � �see Fig. 2�. A clear dimerization is found
for J3 /J1=0.5 but not for J3=0, as in the latter case the dimer
susceptibility does not display the sharp 	
N2 divergence
required in a symmetry broken phase.12

In the following, we will show that a simple variational
ansatz is able to explain the gross features of the anomalous
low-energy spectrum. Our construction is based on a pro-
jected BCS �pBCS� wave function:

�pBCS� = P�BCS� , �2�

where P is the projector onto the subspace of single occupied
sites, and �BCS� is the ground state of

HBCS = − t �
�R,R���

cR,�
† cR�,� + �

R,R�

�R,R�cR,↑
† cR�,↓

† + H.c., �3�

where cR,�
† �cR,�� creates �destroys� an electron of spin � at

site R= �x ,y�, t=1 is the nearest-neighbor hopping ampli-
tude, and �R,R�=�R�,R are real singlet pairings determining
the symmetry of the BCS order parameter. If the pairing
involves only nearest-neighbors sites along the coordinate
directions, �x and �y �even under both reflections Rx and
Ry�, the BCS eigenstates can be labeled by further quantum

FIG. 2. �Color online� Size scaling for the dimer susceptibility 	
�upper panels� and for the triplet gap � �lower panels� evaluated by
DMRG.

FIG. 3. �Color online� Triplet gap � as a function of J3 /J1 in
the thermodynamic limit, from DMRG data. The line is a fit accord-
ing to the KT theory, �=A exp	−b /
�J3−J3

c� /J1�. Inset: Detail for
J3 /J1�0.3.
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numbers, i.e., ph= ±1, associated to the particle-hole trans-
formation

PhcR,�
† Ph = sign����− 1�x+ycR,−�, �4�

which commutes with both HBCS and P, and the projected
state �2� has the same spatial symmetries of the spin Hamil-
tonian. However, the physical states that survive after projec-
tion are only those with ph=1 for even Sz or ph=−1 for odd
Sz. Therefore all physical states have a given Ph according to
their z component of the total spin. In the BCS Hamiltonian,
we have the freedom to take either periodic boundary condi-
tions �PBC�, i.e., cx,y =cx+L,y, or antiperiodic ones �APBC�,
i.e., cx,y =−cx+L,y. Of course, in both cases, after projection
the wave function �2� describes a spin state consistent with
PBC. The lowest-energy state is obtained with PBC for L
=4m+2 and with APBC for L=4m, while the lowest excita-
tions correspond to the Gutzwiller projection of the BCS
ground states with the other choice of the boundary condi-
tions, namely APBC �PBC� for L=4m+2 �L=4m�. In this
case, the ground state of Eq. �3� is degenerate because of the
presence of four zero-energy Bogoliubov modes that can be
identified as spinons, carrying spin 1/2 and momenta kx
= ±� /2. With these objects, we can construct four zero-
energy states with ph=1 �that survive after projection�: One
triplet and three singlets. Indeed, two spinons can form �i� a
triplet of momentum kx=� even under Rx, �ii� one singlet
with kx=� odd in Rx, and �iii� one singlet with kx=0 even
under Rx. A further singlet can be obtained by combining
zero and four spinons, yielding �iv� a state with momentum
kx=� and odd with respect to Rx. All these states have Ry
even. The two singlet states �ii� and �iv�, belonging to the
same symmetry subspace, do not represent distinct excita-
tions: In fact, numerical calculations show that their overlap
increases with the size of the system. Analogously, the sin-
glet �iii� is asymptotically identical to the ground state.
Therefore, out of the four distinct states, we just obtain two
independent excitations: A triplet and a singlet, precisely re-
producing the lowest level of the “tower of states” predicted
by conformal field theory in the nonfrustrated case.13

Much more interesting is the case when the BCS Hamil-
tonian breaks some symmetry that is instead restored after
projection. For instance, as already emphasized in 2D,14 we
can add a next-nearest-neighbor pairing �xy, with odd reflec-
tion symmetry under Rx and Ry. In this case, both reflection
and particle-hole symmetry �4� do not commute with HBCS
because of the simultaneous presence of �x, �y, and �xy.
Instead, after projection onto the physical subspace with sin-
gly occupied sites, these symmetries are restored. Indeed, in

this case, the BCS Hamiltonian is invariant under R̃x

= PhRx and R̃y = PhRy. Therefore the ground state of HBCS

has a well-defined value of R̃x and R̃y and, after projection,
since Ph is the identity in the physical Hilbert space, it has
also well-defined values of the true reflection symmetries Rx
and Ry. Since Ph is no longer a symmetry of HBCS, the
eigenstates that were previously forbidden in the physical
spectrum due to their wrong value of Ph are instead now
allowed. This approach predicts to a pair of ry =−1 excita-
tions not present in the usual bosonization analysis: They are

both singlets, even with respect to Rx and have different
momenta: �v� kx=0 and �vi� kx=�. Remarkably, the first of
these states has precisely the same quantum numbers of the
lowest excitation emerging in the frustrated regime
J2 /J1�0.55, while the second one, although higher in en-
ergy, has a sudden drop in the same region, see Fig. 1.

Further insight on the physics underlying this result
comes from the structure of the BCS excitations. The key
feature induced by a nonvanishing �xy coupling is the local-
ization of the spinon wave function � j near the edges of the
ladder �here j labels the number of the leg�: �2j =0 and
�2j+1=� j with �=−�t−2�xy + i�y� / �t+2�xy + i�y�. Only in the
�xy→0 limit we get �=−1 and the spinon delocalizes among
the chains. Instead, if ����1, the gapless spinons become
edge states. This scenario is confirmed by a DMRG study on
three- and five-leg ladders with an odd number of sites per
leg, so to have a free spinon trapped in the lattice.

After this detailed exam of the general properties of the
pBCS wave function, we show in Fig. 4 the “phase diagram”
of the three-leg ladder, obtained by variational Monte Carlo
optimization. The optimal couplings �x, �y, and �xy have
been numerically determined. The most relevant feature is
the stabilization of a nonvanishing �xy for J2 /J1�0.44. The
variational estimate of the transition point is likely to be
somewhat inaccurate, e.g., for one chain, spontaneous dimer-
ization is found for J2 /J1�0.15 instead of J2 /J1�0.24.
Nevertheless we believe that the global trends emerging from
this phase diagram are representative of the real behavior of
the model. Furthermore, we checked that dimer correlations
do not display any clear tendency towards ordering. Note
that, whenever the spinon spectrum is gapped �e.g., when

FIG. 4. �Color online� “Phase diagram” of the J1-J2 three-leg
ladder found by the variational pBCS state �see text�. The Brillouin
zone for the 2D lattice is shown in the inset: Stars indicate 2D
gapless spinon excitations for �xy =0 	at �±� /2 , ±� /2�� and red
dots for �xy�0.
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PBC are taken along the rungs�, the same pBCS wave func-
tion describes a dimerized state for finite n.15

Finally, by considering the set of variational parameters
obtained by Monte Carlo optimization of the ground-state
wave function, we evaluated the elementary excitations on
the 10�3 ladder by a change in the boundary conditions
along the chain, without further optimization. In this way,
besides the ground state, we obtained an explicit form of the
excited states �i�, �ii�, �v�, and �vi� discussed previously. The
variational energies and the overlaps with the exact lowest
eigenstates are shown in Table I for J2 /J1=0.55. The impres-
sive accuracy of the pBCS wave function for the full set of
low-lying states provides clear evidence in favor of the varia-
tional picture.

In conclusion, our results point toward the existence of
gapless phases in the three-leg spin-1 /2 J1-J2 Heisenberg
antiferromagnet for all values of the next-nearest-neighbor
frustrating interaction. An unconventional gapless phase with
an excitation spectrum characterized by the presence of low-
energy edge states is stabilized upon frustration. Although
we cannot exclude the possibility of an exponentially small
dimerization �e.g., with a spin gap for three legs of order
10−8J1�, we believe that the qualitative features that we found
faithfully characterize the physics of the system. This homo-
geneous phase is accurately described by a projected BCS
wave function representing an algebraic spin liquid. This
scenario is even more plausible in 2D, especially considering
that the exponentially small tail of the gap implied by the KT
behavior should disappear and that the same type of wave
function remains accurate when increasing the �odd� number
n of legs. The strongly frustrated region in 2D is then a
gapless state with incommensurate spinon excitations, that
naturally result from the stabilization of a finite �xy,14 see
Fig. 4. Such an exotic spin spectrum can be experimentally
detected in 2D frustrated antiferromagnets, like Li2VOSiO4

and VOMoO4 under pressure.16,17
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